Home
Class 12
MATHS
For the matrix A=[(1, 1, 1),( 1, 2,-3),(...

For the matrix `A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]`. Show that `A^3-6A^2+5A+11 I=0`. Hence, find `A^(-1)`.

Text Solution

AI Generated Solution

To solve the problem, we need to show that \( A^3 - 6A^2 + 5A + 11I = 0 \) for the matrix \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & 1 & 3 \end{pmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[11112-32-13]. Show that A^(3)-6A^(2)+5A+11I_(3)=O. Hence find A^(-1) .

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

NCERT-DETERMINANTS-EXERCISE 4.5
  1. For the matrix A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]. Show that A^3-6A^2...

    Text Solution

    |

  2. For the matrix A=[[3,2],[1,1]], find the numbers a and b such that A^2...

    Text Solution

    |

  3. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |

  4. Find the inverse the matrix (if it exists)given in[(1, 0, 0),( 0,cosal...

    Text Solution

    |

  5. Let A=[(3, 7),( 2, 5)]and B=[(6, 8),( 7, 9)]. Verify that (A B)^(-1)=B...

    Text Solution

    |

  6. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  7. If A=[[2,-1, 1],[-1 ,2,-1],[ 1, -1, 2]].Verify that A^3-6A^2+9A-4I=0an...

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in[[1, 0, 0],[ 3, 3, 0...

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in[(2, 1, 3),( 4,-1, ...

    Text Solution

    |

  10. Find adjoint of the matrice in[(1,-1, 2),( 2, 3, 5),(-2, 0, 1)]

    Text Solution

    |

  11. Verify A (a d j A) = (a d j A) A = |A|I " " " " " where A=[(2 ,3),(-4...

    Text Solution

    |

  12. Find adjoint of the matrice in[(1, 2),( 3, 4)]

    Text Solution

    |

  13. Find the inverse the matrix (if it exists)given in[(-1, 5),(-3, 2)]

    Text Solution

    |

  14. Find the inverse the matrix (if it exists)given in[(1, 2, 3),( 0, 2, 4...

    Text Solution

    |

  15. Verify A (a d j A) = (a d j A) A = |A|I [(1,-1,2),(3,0,-2),(1,0,3)]

    Text Solution

    |

  16. Find the inverse the matrix (if it exists)given in[(2,-2),( 4, 3)]

    Text Solution

    |

  17. Find the inverse the matrix (if it exists)given in[(1,-1, 2),( 0, 2,-3...

    Text Solution

    |

  18. If A=[(3, 1),( 1, 2)], show that A^2-5A+5I=0. Hence, find A^(-1).

    Text Solution

    |