Home
Class 12
MATHS
For the matrix A=[(1, 1, 1),( 1, 2,-3),(...

For the matrix `A=[(1, 1, 1),( 1, 2,-3),( 2, 1, 3)]`. Show that `A^3-6A^2+5A+11 I=0`. Hence, find `A^(-1)`.

Text Solution

AI Generated Solution

To solve the problem, we need to show that \( A^3 - 6A^2 + 5A + 11I = 0 \) for the matrix \[ A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & 1 & 3 \end{pmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.6|15 Videos
  • DETERMINANTS

    NCERT|Exercise Exercise 4.2|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[11112-32-13]. Show that A^(3)-6A^(2)+5A+11I_(3)=O. Hence find A^(-1) .

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[(3,-3,4),(2,-3,4),(0,-1,1)]2-3 41 then show that A^-1=A^1.

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)