Home
Class 12
MATHS
Using the property of determinants and w...

Using the property of determinants and without expanding, prove that:`|[-a^2,a b, a c],[ b a, -b^2,b c],[c a, c b,-c^2]|=4a^2b^2c^2`

Text Solution

Verified by Experts

`L.H.S. = |[-a^2,ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|`
`=abc|[-a,b,c],[a,-b,c],[a,b,-c]|`(Taking `a,b,c` common along rows)
`=a^2b^2c^2|[-1,1,1],[1,-1,1],[1,1,-1]|`(Taking `a,b,c` common along columns)
Applying `R_2->R_2+R_1` and `R_3->R_3+R_1`
`=a^2b^2c^2|[-1,1,1],[0,0,2],[0,2,0]|`
`=a^2b^2c^2[-1(0-4)-1(0)+1(0)]`
`=4a^2b^2c^2 = R.H.S.`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.5|18 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.1|8 Videos
  • DETERMINANTS

    NCERT|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT|Exercise QUESTION|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos

Similar Questions

Explore conceptually related problems

Using the property of determinants and without expanding,prove that: det[[a-b,b-c,c-ab-c,c-a,a-bc-a,a-b,b-c]]=0

Using the property of determinants and without expanding,prove that: det[[1,bc,a(b+c)1,ca,b(c+a)1,ab,x(a+b)]]=0

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Using the property of determinants and without expanding in questions 1 to 7 prove that , |{:(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c):}|=0

Prove: |(a^2,b c, a c+c^2),(a^2+a b,b^2,a c ),(a b,b^2+b c,c^2)|=4a^2b^2c^2

Using properties of determinants,prove that det[[-a^(2),ab,acba,-b^(2),bcca,cb,-c^(2)]]=4a^(2)b^(2)c^(2)

Without expanding show that |[b^2c^2,b c, b+c],[c^2a^2,c a ,c+a ],[a^2b^2,a b ,a+b]|=0

Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^2,ab]|=|[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|