Home
Class 12
MATHS
Suppose that the function f(x) and g(x) ...

Suppose that the function f(x) and g(x) satisfy the system of equations `f(x)+3g(x)=x^(2)+x+6`
and `2f(x)+4g(x)=2x^(2)+4` for every x. The value of `x` for which `f(x)=g(x)` can be equal to

A

`-2`

B

`2`

C

`-5`

D

`5`

Text Solution

Verified by Experts

The correct Answer is:
A, D

`f(x)+3g(x)=x^(2)+x+6` ..(i)
`2f(x)+4g(x)=2x^(2)+4` .(ii)
(i). `X2-(ii)implies2g(x)=2x+8`
`g(x)=x+4`
`impliesf(x)=x^(2)+x+6-3g(x)`
`=x^(2)+x+6-3(x+4)`
`=x^(2)-2x-6`
`f(x)=g(x)impliesx+4=x^(2)-2x-6`
`impliesx^(2)-3x-10=0`
`(x-5)(x+2)=0`
`impliesx-2,5`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TEST PAPERS

    RESONANCE|Exercise MATHEMATICS|263 Videos
  • TEST PAPERS

    RESONANCE|Exercise PART - I MATHMATICS|84 Videos
  • TEST PAPER

    RESONANCE|Exercise CHEMISTRY|37 Videos
  • TEST SERIES

    RESONANCE|Exercise MATHEMATICS|131 Videos

Similar Questions

Explore conceptually related problems

Find all functions F(x) and G(x) which satisfy the system: F(2x+1)+2G(2x+1)=2x and F((x)/(x-1))+G((x)/(x-1))=x

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

Knowledge Check

  • If the function f(x)=3x+a and g(x) =4x+9 are such that (g@g)(x)=(g@f)(x), then: a=

    A
    1
    B
    5
    C
    6
    D
    -2
  • If : f(x)=x^2 and g(x)=2^x, then, the solution set of the equation (f@g)(x)=(g@f)(x) is

    A
    R
    B
    `{0}`
    C
    `{0,2}`
    D
    `R^+`
  • If a function f(x) satisfies f'(x)=g(x) . Then, the value of int_(a)^(b)f(x)g(x)dx is

    A
    `(1)/(2)[{(f(b)}^(2)-{f(a)}^(2)]`
    B
    `(1)/(2)[{f(b)}^(2)+{f(a)}^(2)]`
    C
    `(1)/(2)[f(b)-f(a)]^(2)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    Consider two real valued functions f(x) & g(x) satisfy the equations g(X)=f(x)-5 and f(x)-f(2-x)=0, x in R then g(2)+g(4)+g(6)-g(0)-g(-2)-g(4) is equal to

    If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(x) is

    If f(x)=x^(2)g (x) and g(1)=6, g'(x) 3 , find the value of f' (1).

    Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

    If the function f(x) = 2+x^2-e^x and g(x) = f^(-1)(x) , then the value of |g^'(1)|/4 equals