Home
Class 10
MATHS
log(3)root(9)(3)=...

`log_(3)root(9)(3)=`

A

`(1)/(9)`

B

`(3)/(2)`

C

`(1)/(2)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \log_{3} \sqrt[9]{3} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the 9th root of 3 in exponential form: \[ \sqrt[9]{3} = 3^{1/9} \] Thus, we can express the logarithm as: \[ \log_{3} \sqrt[9]{3} = \log_{3} (3^{1/9}) \] ### Step 2: Apply the power rule of logarithms Using the logarithmic identity \( \log_{b} (a^{n}) = n \cdot \log_{b} (a) \), we can simplify: \[ \log_{3} (3^{1/9}) = \frac{1}{9} \cdot \log_{3} (3) \] ### Step 3: Evaluate \( \log_{3} (3) \) We know that \( \log_{b} (b) = 1 \) for any base \( b \). Therefore: \[ \log_{3} (3) = 1 \] ### Step 4: Substitute back into the equation Now substituting back, we have: \[ \log_{3} (3^{1/9}) = \frac{1}{9} \cdot 1 = \frac{1}{9} \] ### Final Answer Thus, the value of \( \log_{3} \sqrt[9]{3} \) is: \[ \frac{1}{9} \]

To solve the problem \( \log_{3} \sqrt[9]{3} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting the 9th root of 3 in exponential form: \[ \sqrt[9]{3} = 3^{1/9} \] Thus, we can express the logarithm as: ...
Promotional Banner

Topper's Solved these Questions

  • MISCELLANEOUS TOPICS

    KAPLAN|Exercise MISCELLANEOUS TOPICS FOLLOW - UP TEST|12 Videos
  • MATH TEST-01

    KAPLAN|Exercise Multiple Choice Question|20 Videos
  • PLANE GEOMETRY

    KAPLAN|Exercise PLANE GEOMETRY FOLLOW - UP TEST|6 Videos

Similar Questions

Explore conceptually related problems

Solve: 27^(log_(3)root(3)(x^(2)-3x+1) )=(log_(2)(x-1))/(|log_(2)(x-1)|) .

Find the value of log_(1//3)root(4)(729*root(3)(9^(-1)*27^(-4//3))) .

Find the value of x satisfying the equation ((log)_3 root(3)(3x)+(log)_x root(3)(3x))dot(log)_3x^3+((log)_3 root(3)(x/3)+(log)_xroot(3)(3/x))dot(log)_3x^3=2

log_(8)(128)-log_(9)cot((pi)/(3))=

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

If log_(16)(log_(root(4)(3))(log_(root(3)(5))(x)))=(1)/(2) , find x.

(2)/(root(3)(9) - root(3)(3)+1) - (1)/(root(3)(9)+root(3)(3)+1) = 1) 1 , 2) -1 , 3) root(3)(3) , 4) - root(3)(3)

Compute log_(ab)(root(3)a//sqrtb)" if " log_(ab) a = 4 .

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is