Home
Class 11
PHYSICS
Mark correct statement(s) for vec(a) , ...

Mark correct statement(s) for `vec(a) , vec(b)` and `vec(c)` shown in above diagram :

A

`-vec(a)-vec(b)=vec(c)`

B

`vec(a)+vec(c)=vec(-b)`

C

`vec(a)+vec(c)=vec(b)`

D

`vec(b)-vec(c)=vec(-a)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

From triangle law :m
` " "vec(a)+vec(b)=-vec(c)`
`rArr " " -vec(a)-vec(b)= vec(c)" " "Hence(A)" `
`rArr " " vec(a)=vec(c)=-vec(b) " " "Hence (B)" `
`rArr " " vec(b)+vec(c)=-vec(a) " " "Hence (D)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 2 [MATRIX TYPE]|1 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 3 (Miscellaneous Exercise)|20 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise EXERCISE - 1 [SINGLE CORRECT CHOICE TYPE]|34 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

Choose the correct statement (A) If vec A+vec B=vec A-vec B then vec B is a null vector (B) If |vec A+vec B|=|vec A-vec B| then vec A and vec B are perpendicular vectors (c) Both of the above (D) None of the above

Givem below in column I are the relations between vectors vec a, vec b and vec c and in column II are that orientations of vec a, vec b and vec C in the (XY) plane . Match therelation in column I to correct orientatlons in column II. Column I , Column II (a) vec a+vec b=vec c , (i) . (b) vec a- vec c =vec b , (ii) . (c ) vec b - vec a =vec c , (iii) . (d) vec a+ vec b+ vec c =0 (iv) .

Knowledge Check

  • Consider the following inequalities in respect of vector vec(a) and vec(b) 1. |vec(a) + vec(b)| le |vec(a)| + |vec(b)| 2. |vec(a) - vec(b)| ge |vec(a)|- |vec(b)| Which of the above is/are correct?

    A
    A) Only 1
    B
    B) Only 2
    C
    C) Both 1 and 2
    D
    D) Neither 1 nor 2
  • Let vec(a).vec(b) and vec(c ) be three mutually perpendicular vectors each of unit magnitude. If vec(A) = vec(a) + vec(b) + vec(c ),  vec(B) = vec(a)- vec(b) + vec(c ) and vec(C ) = vec(a) - vec(b) - vec(c ) , then which one of the following is correct?

    A
    1) `|vec(A)| gt |vec(B)| gt |vec(C )|`
    B
    2) `|vec(A) | = |vec(B)| ne |vec(C )|`
    C
    3) `|vec(A) |= |vec(B) | = |vec(C )|`
    D
    4) `|vec(A) | ne |vec(B)| ne |vec(C )|`
  • Consider the following statements 1. For any three vectors vec(a), vec(b), vec(c) , vec(a). {(vec(a)+vec(c))xx(vec(a)+vec(b)+vec(c))}=0 2. For any three coplanar unit vectors vec(d), vec(e), vec(f), (vec(d)xxvec(e)).vec(f)=1 Which of the statements given above is/are correct?

    A
    1 only
    B
    2 only
    C
    Both 1 and 2
    D
    Neither 1 nor 2
  • Similar Questions

    Explore conceptually related problems

    If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

    In each of the following, fill in the blank so that the resulting statement is correct. If vec a, vec b, vec c are three unit vectors such that vec a= lambda vec b + mu vec c an vec a * vec b=0, vec a * vec c=1/2 then |vec b * vec c|= ___________.

    If vec rdot vec a= vec rdot vec b= vec rdot vec c=1/2 or some nonzero vector vec r , then the area of the triangle whose vertices are A( vec a),B( vec b)a n dC( vec c)i s( vec a , vec b , vec c are non-coplanar) |[ vec a vec b vec c]| b. | vec r| c. |[ vec a vec b vec c] vec r| d. none of these

    If vec(a) + vec(b)+vec(c)=vec(0) , then which of the following is/are correct? 1. vec(a), vec(b), vec(c) are coplanar. 2. vec(a)xx vec(b) = vec(b) xx vec(c) = vec(c) xx vec(a) Select the correct answer using the code given below.

    The vectors vec(a), vec(b) and vec(c) are related by vec(c) = vec(a) + vec(b) . Which diagram below illustrates this relationship ?