Home
Class 12
MATHS
f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(...

`f(x)=(sin^(- 1)x)^2*cos(1/ x)"if"x!=0;f(0)=0,f(x)` is :

A

count. No where in `-1 le x le 1`

B

cont. every where in `-1 le x le 1`

C

differentiable no where in `-1 le x le 1`

D

differentiable everywhere in `-1 lt x lt 1`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY

    MOTION|Exercise EXERCISE - 3|19 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 3 (PASSAGE BASED QUESTION (21-24))|4 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE -2 (LEVEL -II) IDENTIFYING UNKNOWN CONSTANT USING THE CONCEPT OF CONTINUITY|1 Videos
  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED|33 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos

Similar Questions

Explore conceptually related problems

f(x)=(sin^(-1)x)^(2)*cos((1)/(x))ifx!=0;f(0)=0,f(x)

Let f'(x)=3x^(2)sin((1)/(x))-x cos((1)/(x)), if x!=0,f(0)=0 and f((1)/(pi))=0 then

If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} then f(x) is

If f'(x)=3x^(2)sin(1/x)-x cos(1/x) ,x!=0 ,f(0)=0 then the value of f((1)/(pi)) is

A function f(x) is defined as below f(x)=(cos(sin x)-cos x)/(x^(2)),x!=0 and f(0)=a f(x) is continuous at x=0 if 'a' equals

Show that the function f(x)={((x^2sin(1/x),if,x!=0),(0,if,x=0)) is differentiable at x=0 and f'(0)=0

f(x)=(sin x-x cos x)/(x^(2)) if x!=0 and f(0)=0 then int_(0)^(1)f(x)dx is

If f(x)={{:(sin(cos^(-1)x)+cos(sin^(-1)x)",",xle0),(sin(cos^(-1)x)-cos(sin^(-1)x)",",xgt0):} then at x = 0

The function f(x)=x cos((1)/(x^(2))) for x!=0,f(0)=1 then at x=0,f(x) is