Home
Class 12
MATHS
Prove that, 3[sin^(4)((3pi)/2 - alpha) +...

Prove that, `3[sin^(4)((3pi)/2 - alpha) + sin^(4)(3pi + alpha)] - 2[sin^(6)((pi)/2 + alpha) + sin^(6) (5pi - alpha)] = 1`

Answer

Step by step text solution for Prove that, 3[sin^(4)((3pi)/2 - alpha) + sin^(4)(3pi + alpha)] - 2[sin^(6)((pi)/2 + alpha) + sin^(6) (5pi - alpha)] = 1 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - MULTIPLE CORRECT ANSWERS TYPE|5 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - INTEGER ANSWERS TYPE|5 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS (4 marks)|23 Videos
  • TRIGONOMETRIC INVERSE CIRCULAR FUNCTIONS

    CHHAYA PUBLICATION|Exercise sample questions for competive examination|20 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Show that 3{sin^4((3pi)/2-alpha)+sin^4(3pi+alpha)}-2{sin^6(pi/2+alpha)+ sin^6(5pi-alpha)}=1

Prove that, sin^(2) alpha + sin^(2) (120^(@) - alpha) + sin^(2) (120^(@) + alpha) = 3/2

Knowledge Check

  • The expression 3{sin^4((3pi/2)-alpha)+sin^4(3pi-alpha)} -2{sin^6(pi/2+alpha)+sin^6(5pi-alpha)} is equal to

    A
    0
    B
    1
    C
    3
    D
    `sin 4alpha=cos 6alpha`
  • Similar Questions

    Explore conceptually related problems

    Show that: sin^(3) alpha + sin^(3) (120^(@) + alpha) + sin^(3) (240^(@) + alpha)= - 3/4 sin 3 alpha

    Prove that, 1/3 ( cos^(3) alpha sin 3 alpha + sin^(3) alpha cos 3 alpha) = 1/4 sin 4 alpha

    Prove that, cos^(2) (pi/4) + sin^(2) (3pi/4) + sin^(2) (5pi/4) + sin^(2)(7pi/4) = 2 .

    Prove that sin (pi/14)sin((3pi)/14)sin((5pi)/14)=1/8

    Simplify: (cos(2pi + alpha)"cosec" (pi - alpha) tan (pi/2 + alpha))/("sec" (pi/2 + alpha) sin ((3pi)/2 - alpha) cot (2pi - alpha))

    Calculate the value of (sin^(6)alpha +cos^(6) alpha + 3sin^(2) alpha cos^(2) alpha).

    If cos3theta=cos3alpha, then the value of sintheta can be given by +-sinalpha (b) sin(pi/3+-alpha) sin((2pi)/3+alpha) (d) sin((2pi)/3-alpha)