Home
Class 12
MATHS
The value of (n+2).^(n)C(0).2^(n+1)-(n+1...

The value of `(n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1)` terms is equal to

A

4

B

4n

C

`4(n+1)`

D

`2(n+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (n+2) \cdot \binom{n}{0} \cdot 2^{n+1} - (n+1) \cdot \binom{n}{1} \cdot 2^n + n \cdot \binom{n}{2} \cdot 2^{n-1} - \ldots \] This continues for \( (n+1) \) terms. ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ (-1)^r \cdot (n+2-r) \cdot \binom{n}{r} \cdot 2^{n+1-r} \] where \( r \) ranges from \( 0 \) to \( n+1 \). ### Step 2: Write the Series The series can be rewritten as: \[ \sum_{r=0}^{n+1} (-1)^r \cdot (n+2-r) \cdot \binom{n}{r} \cdot 2^{n+1-r} \] ### Step 3: Split the Sum We can split the sum into two parts: \[ \sum_{r=0}^{n+1} (-1)^r (n+2) \cdot \binom{n}{r} \cdot 2^{n+1-r} - \sum_{r=0}^{n+1} (-1)^r r \cdot \binom{n}{r} \cdot 2^{n+1-r} \] ### Step 4: Evaluate the First Sum The first sum can be simplified using the binomial theorem: \[ (n+2) \cdot \sum_{r=0}^{n+1} (-1)^r \cdot \binom{n}{r} \cdot 2^{n+1-r} = (n+2) \cdot (1 - 2)^{n} = (n+2) \cdot (-1)^{n} \] ### Step 5: Evaluate the Second Sum The second sum can be evaluated using the identity \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \): \[ \sum_{r=0}^{n+1} (-1)^r r \cdot \binom{n}{r} \cdot 2^{n+1-r} = n \cdot \sum_{r=1}^{n+1} (-1)^{r} \cdot \binom{n-1}{r-1} \cdot 2^{n+1-r} \] This simplifies to: \[ n \cdot (1 - 2)^{n-1} = n \cdot (-1)^{n-1} \] ### Step 6: Combine the Results Combining both results, we have: \[ (n+2)(-1)^{n} - n(-1)^{n-1} \] ### Step 7: Simplify the Expression This can be simplified to: \[ (-1)^{n} \left( (n+2) + n \right) = (-1)^{n} (2n + 2) \] ### Step 8: Final Result Thus, the value of the expression is: \[ 2(n + 1)(-1)^{n} \] ### Conclusion The value of the given expression is \( 2(n + 1)(-1)^{n} \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 72

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

Knowledge Check

  • The value of .^(n)C_(0).^(n)C_(n)+.^(n)C_(1).^(n)C_(n-1)+...+.^(n)C_(n).^(n)C_(0) is

    A
    `.^(2n)C_(n-1)`
    B
    `.^(2n)C_(n)`
    C
    `.^(2n)C_(n+1)`
    D
    `.^(2n)C_(2)`
  • The value of (.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(2))/(2n)

    A
    `underset(0)overset(1)intx^(n-1)(1-x)^(n)dx`
    B
    `underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`
    C
    `underset(1)overset(2)int(1+x)^(n)dx`
    D
    `underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`
  • The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

    A
    `""^(n+k+1)C_(n+1)`
    B
    `""^(n+k)C_(n)`
    C
    `""^(n+k)C_(n+1)`
    D
    None of these
  • Similar Questions

    Explore conceptually related problems

    The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

    Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

    Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

    The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

    If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……