Home
Class 12
MATHS
The value of (n+2).^(n)C(0).2^(n+1)-(n+1...

The value of `(n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1)` terms is equal to

A

4

B

4n

C

`4(n+1)`

D

`2(n+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (n+2) \cdot \binom{n}{0} \cdot 2^{n+1} - (n+1) \cdot \binom{n}{1} \cdot 2^n + n \cdot \binom{n}{2} \cdot 2^{n-1} - \ldots \] This continues for \( (n+1) \) terms. ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ (-1)^r \cdot (n+2-r) \cdot \binom{n}{r} \cdot 2^{n+1-r} \] where \( r \) ranges from \( 0 \) to \( n+1 \). ### Step 2: Write the Series The series can be rewritten as: \[ \sum_{r=0}^{n+1} (-1)^r \cdot (n+2-r) \cdot \binom{n}{r} \cdot 2^{n+1-r} \] ### Step 3: Split the Sum We can split the sum into two parts: \[ \sum_{r=0}^{n+1} (-1)^r (n+2) \cdot \binom{n}{r} \cdot 2^{n+1-r} - \sum_{r=0}^{n+1} (-1)^r r \cdot \binom{n}{r} \cdot 2^{n+1-r} \] ### Step 4: Evaluate the First Sum The first sum can be simplified using the binomial theorem: \[ (n+2) \cdot \sum_{r=0}^{n+1} (-1)^r \cdot \binom{n}{r} \cdot 2^{n+1-r} = (n+2) \cdot (1 - 2)^{n} = (n+2) \cdot (-1)^{n} \] ### Step 5: Evaluate the Second Sum The second sum can be evaluated using the identity \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \): \[ \sum_{r=0}^{n+1} (-1)^r r \cdot \binom{n}{r} \cdot 2^{n+1-r} = n \cdot \sum_{r=1}^{n+1} (-1)^{r} \cdot \binom{n-1}{r-1} \cdot 2^{n+1-r} \] This simplifies to: \[ n \cdot (1 - 2)^{n-1} = n \cdot (-1)^{n-1} \] ### Step 6: Combine the Results Combining both results, we have: \[ (n+2)(-1)^{n} - n(-1)^{n-1} \] ### Step 7: Simplify the Expression This can be simplified to: \[ (-1)^{n} \left( (n+2) + n \right) = (-1)^{n} (2n + 2) \] ### Step 8: Final Result Thus, the value of the expression is: \[ 2(n + 1)(-1)^{n} \] ### Conclusion The value of the given expression is \( 2(n + 1)(-1)^{n} \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 72

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 74

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of .^(n)C_(0).^(n)C_(n)+.^(n)C_(1).^(n)C_(n-1)+...+.^(n)C_(n).^(n)C_(0) is

If the value of (n + 2) . ""^(n)C_(0) *2^(n+1) - (n+1) * ""^(n)C_(1)*2^(n) + n* ""^(n)C_(2) * 2^(n-1) -... is equal to k(n +1) , the value of k is .

(n+2)C_(0)(2^(n+1))-(n+1)C_(1)(2^(n))+(n)C_(2)(2^(n-1))- is equal to

The value of |111^(n)C_(1)^(n+2)C_(1)^(n+4)C_(1)^(n)C_(2)^(n+2)C_(2)^(n+4)C_(2)| is

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

NTA MOCK TESTS-NTA JEE MOCK TEST 73-MATHEMATICS
  1. The value of (n+2).^(n)C(0).2^(n+1)-(n+1).^(n)C(1).2^(n)+(n).^(n)C(2)....

    Text Solution

    |

  2. Let a, b and c satisfy the system of equations a+2b+3c=6, 4a+5b+6c=1...

    Text Solution

    |

  3. If a ,b ,a n dc are in A.P. and one root of the equation a x^2+b c+c=0...

    Text Solution

    |

  4. If sin^6 theta + cos^6 theta+ k cos^2 2theta =1, then k=

    Text Solution

    |

  5. Let f(x)=|x| and g(x)=[x], (where [.] denotes the greatest integer fun...

    Text Solution

    |

  6. The length of the radius of the circle which touches the x - axis at t...

    Text Solution

    |

  7. Let x(1),x(2),…x(n) be n observations such that Sigmax(i)^(2)=500 and ...

    Text Solution

    |

  8. Two vertical poles AL and BM of height 25 m and 100 m respectively sta...

    Text Solution

    |

  9. A multiple - choice question has 5 options of which only one is correc...

    Text Solution

    |

  10. If the line (x-1)/(1)=(y-k)/(-2)=(z-3)/(lambda) lies in the plane 3x+4...

    Text Solution

    |

  11. If a(1)^(2)+a(2)^(2)+a(3)^(2)=1, b(1)^(2)+b(2)^(2)+b(3)^(2)=4, c(1)^(2...

    Text Solution

    |

  12. The number of ways of selecting two distinct numbers from the first 15...

    Text Solution

    |

  13. The number of possible straight lines passing through point(2,3) and f...

    Text Solution

    |

  14. If p and q are logical statements, then (p^^q)rarr(prarrq) is equivale...

    Text Solution

    |

  15. The curve having differential equation, xcosy(dy)/(dx)+siny=x and pass...

    Text Solution

    |

  16. If z(1), z(2) and z(3) are the vertices of a triangle in the argand pl...

    Text Solution

    |

  17. The range of the function f(x)=x^(2)ln(x)" for "x in [1, e]" is " [a, ...

    Text Solution

    |

  18. Consider I(1)=int(10)^(20)(lnx)/(lnx+ln(30-x))dx and I(2)=int(20)^(30)...

    Text Solution

    |

  19. The length of the intercept cut by the line 4x+4sqrt3y-1=0 between the...

    Text Solution

    |

  20. The area (in sq. units) bounded by [|x|]+[|y|]=2 in the first and thir...

    Text Solution

    |