Home
Class 12
MATHS
If A = int(0)^((pi)/(2))(sin^(3)x)/(1+co...

If `A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx`, then `(2A)/(B)` is equal to

A

`-2A`

B

4

C

2

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( A \) and \( B \) and then find the value of \( \frac{2A}{B} \). ### Step 1: Evaluate \( A \) Given: \[ A = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x}{1 + \cos^2 x} \, dx \] We can rewrite \( \sin^3 x \) as \( \sin x (1 - \cos^2 x) \): \[ A = \int_{0}^{\frac{\pi}{2}} \frac{\sin x (1 - \cos^2 x)}{1 + \cos^2 x} \, dx \] This can be split into two integrals: \[ A = \int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} \, dx - \int_{0}^{\frac{\pi}{2}} \frac{\sin x \cos^2 x}{1 + \cos^2 x} \, dx \] ### Step 2: Substitute \( \cos x = t \) Let \( \cos x = t \), then \( -\sin x \, dx = dt \). The limits change as follows: - When \( x = 0 \), \( t = 1 \) - When \( x = \frac{\pi}{2} \), \( t = 0 \) Thus, we have: \[ A = \int_{1}^{0} \frac{-1 + t^2}{1 + t^2} \, dt = \int_{0}^{1} \frac{1 - t^2}{1 + t^2} \, dt \] ### Step 3: Evaluate \( B \) Given: \[ B = \int_{0}^{\frac{\pi}{2}} \frac{\cos^2 x}{1 + \sin^2 x} \, dx \] Using the same substitution \( \sin x = u \) (thus \( \cos x \, dx = du \)): - When \( x = 0 \), \( u = 0 \) - When \( x = \frac{\pi}{2} \), \( u = 1 \) Thus, we have: \[ B = \int_{0}^{1} \frac{1 - u^2}{1 + u^2} \, du \] ### Step 4: Compare \( A \) and \( B \) Notice that both integrals \( A \) and \( B \) are equal: \[ A = B = \int_{0}^{1} \frac{1 - t^2}{1 + t^2} \, dt \] ### Step 5: Calculate \( \frac{2A}{B} \) Since \( A = B \): \[ \frac{2A}{B} = \frac{2B}{B} = 2 \] ### Final Answer: \[ \frac{2A}{B} = 2 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • NTA JEE MOCK TEST 73

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 75

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))(cos^(2)x)/(1+3sin^(2)x)*dx

int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx

int_(0)^((pi)/(2))sin(x)4cos(x)e^(2cos x+1)dx

3. int_(0)^( pi/2)( sin2 x)/(1+cos^(2)x)dx

int_(0)^( pi)(x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

u,=int_(0)^((pi)/(2))cos((2 pi)/(3)sin^(2)x)dx and v,=int_(0)^((pi)/(2))cos((pi)/(3)sin x)dx

int_(0)^((pi)/(2))(x sin x*cos x)dx

int_(0)^( pi/2)(sin^(2)x)/(sin^(2)x+cos^(2)x)dx

int_(0)^((pi)/(2))(x)/(sin x+cos x)dx