Home
Class 12
MATHS
If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1...

If `f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx|` is equal to

A

`1//4`

B

`1//3`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the determinant function \( f(x) \) defined as: \[ f(x) = \left| \begin{array}{ccc} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{array} \right| \] ### Step 1: Calculate the Determinant We will calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{bmatrix} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{bmatrix} \] Here, \( a = \cos x, b = 1, c = 0, d = 1, e = 2 \cos x, f = 1, g = 0, h = 1, i = 2 \cos x \). Now, we can compute the determinant: \[ \text{det}(A) = \cos x \left( (2 \cos x)(2 \cos x) - (1)(1) \right) - 1 \left( (1)(2 \cos x) - (1)(0) \right) + 0 \] Calculating the terms: 1. \( (2 \cos x)(2 \cos x) - 1 = 4 \cos^2 x - 1 \) 2. \( (1)(2 \cos x) - (1)(0) = 2 \cos x \) Putting it all together: \[ \text{det}(A) = \cos x (4 \cos^2 x - 1) - 2 \cos x \] This simplifies to: \[ \text{det}(A) = 4 \cos^3 x - \cos x - 2 \cos x = 4 \cos^3 x - 3 \cos x \] Thus, \[ f(x) = 4 \cos^3 x - 3 \cos x \] ### Step 2: Set Up the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \int_0^{\frac{\pi}{2}} (4 \cos^3 x - 3 \cos x) \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = 4 \int_0^{\frac{\pi}{2}} \cos^3 x \, dx - 3 \int_0^{\frac{\pi}{2}} \cos x \, dx \] ### Step 4: Evaluate Each Integral 1. **Integral of \( \cos x \)**: \[ \int_0^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_0^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] 2. **Integral of \( \cos^3 x \)**: To evaluate \( \int_0^{\frac{\pi}{2}} \cos^3 x \, dx \), we can use the reduction formula or a known result: \[ \int_0^{\frac{\pi}{2}} \cos^3 x \, dx = \frac{2}{3} \] ### Step 5: Substitute Back Now substituting back into the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = 4 \left(\frac{2}{3}\right) - 3(1) = \frac{8}{3} - 3 = \frac{8}{3} - \frac{9}{3} = -\frac{1}{3} \] ### Step 6: Take the Absolute Value Finally, we take the absolute value: \[ \left| \int_0^{\frac{\pi}{2}} f(x) \, dx \right| = \left| -\frac{1}{3} \right| = \frac{1}{3} \] ### Final Answer Thus, the value of the integral is: \[ \frac{1}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| then

Knowledge Check

  • If f(x)=|{:(x,cosx,e^(x^2)),(1,2 cosx,1),(0,1,2 cosx):}| then the value of overset(pi//2)underset(-pi//2)int f(x) dx is equal to

    A
    0
    B
    1
    C
    2
    D
    none of these
  • int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

    A
    log 2
    B
    2 log 2
    C
    `(log 2)^(2)`
    D
    `1/2 log2`
  • int_(0)^(pi)|1+2cosx| dx is equal to :

    A
    `(2pi)/(3)`
    B
    `pi`
    C
    `2`
    D
    `(pi)/(3) + 2sqrt(3)`
  • Similar Questions

    Explore conceptually related problems

    if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1

    if f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0,1,2cosx]| then (df)/(dx) at x=pi/2 is

    int_0^(pi//2) (cosx)/(1+sinx) dx equals to

    int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

    If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to