Home
Class 12
MATHS
If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1...

If `f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(pi//2)underset(0)intf(x)dx|` is equal to

A

`1//4`

B

`1//3`

C

`1//2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of the determinant function \( f(x) \) defined as: \[ f(x) = \left| \begin{array}{ccc} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{array} \right| \] ### Step 1: Calculate the Determinant We will calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ A = \begin{bmatrix} \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x \end{bmatrix} \] Here, \( a = \cos x, b = 1, c = 0, d = 1, e = 2 \cos x, f = 1, g = 0, h = 1, i = 2 \cos x \). Now, we can compute the determinant: \[ \text{det}(A) = \cos x \left( (2 \cos x)(2 \cos x) - (1)(1) \right) - 1 \left( (1)(2 \cos x) - (1)(0) \right) + 0 \] Calculating the terms: 1. \( (2 \cos x)(2 \cos x) - 1 = 4 \cos^2 x - 1 \) 2. \( (1)(2 \cos x) - (1)(0) = 2 \cos x \) Putting it all together: \[ \text{det}(A) = \cos x (4 \cos^2 x - 1) - 2 \cos x \] This simplifies to: \[ \text{det}(A) = 4 \cos^3 x - \cos x - 2 \cos x = 4 \cos^3 x - 3 \cos x \] Thus, \[ f(x) = 4 \cos^3 x - 3 \cos x \] ### Step 2: Set Up the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = \int_0^{\frac{\pi}{2}} (4 \cos^3 x - 3 \cos x) \, dx \] ### Step 3: Split the Integral We can split the integral into two parts: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = 4 \int_0^{\frac{\pi}{2}} \cos^3 x \, dx - 3 \int_0^{\frac{\pi}{2}} \cos x \, dx \] ### Step 4: Evaluate Each Integral 1. **Integral of \( \cos x \)**: \[ \int_0^{\frac{\pi}{2}} \cos x \, dx = [\sin x]_0^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1 \] 2. **Integral of \( \cos^3 x \)**: To evaluate \( \int_0^{\frac{\pi}{2}} \cos^3 x \, dx \), we can use the reduction formula or a known result: \[ \int_0^{\frac{\pi}{2}} \cos^3 x \, dx = \frac{2}{3} \] ### Step 5: Substitute Back Now substituting back into the integral: \[ \int_0^{\frac{\pi}{2}} f(x) \, dx = 4 \left(\frac{2}{3}\right) - 3(1) = \frac{8}{3} - 3 = \frac{8}{3} - \frac{9}{3} = -\frac{1}{3} \] ### Step 6: Take the Absolute Value Finally, we take the absolute value: \[ \left| \int_0^{\frac{\pi}{2}} f(x) \, dx \right| = \left| -\frac{1}{3} \right| = \frac{1}{3} \] ### Final Answer Thus, the value of the integral is: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) Level -II|19 Videos
  • DETERMINANT

    FIITJEE|Exercise COMPREHENSIONS -I|3 Videos
  • DETERMINANT

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) Level -II|12 Videos
  • DEFINITE INTEGRAL

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
  • ELLIPSE

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = |{:(cos x ,1,0 ),(1,2cosx,1),(0,1,2cosx):}| then

Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| then

if f(x)=|[cosx,1,0],[1,2cosx,1],[0,1,2cosx]| then int_0^(pi/2) f(x)dx is equal to (A) 1/4 (B) -1/3 (C) 1/2 (D) 1

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

if f(x)=|[2cosx,1,0],[x-pi/2,2cosx,1],[0,1,2cosx]| then (df)/(dx) at x=pi/2 is

int_(0)^(pi)|1+2cosx| dx is equal to :

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to

FIITJEE-DETERMINANT-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. Statement I If A=[(a^2+x^2,ab-cx,ac+bx),(ab+cx,b^2+x^2,bc-ax),(ac-bx...

    Text Solution

    |

  2. If a,b,c are even natural numbers, then |{:(a-1,a,a+1),(b-1,b,b+1),(c-...

    Text Solution

    |

  3. If f(x) =|{:(cosx,1,0),(1,2 cosx,1),(0,1,2 cosx):}|, "then" |overset(p...

    Text Solution

    |

  4. If f(x)=|{:(x,cosx,e^(x^2)),(1,2 cosx,1),(0,1,2 cosx):}| then the valu...

    Text Solution

    |

  5. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  6. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  7. If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then th...

    Text Solution

    |

  8. The number of values of k for which the system of the equations (k+1)x...

    Text Solution

    |

  9. The determinant Delta =|(a^2(1+x),ab,ac),(ab,b^2(1+x),bc), (ac,bc,c^2(...

    Text Solution

    |

  10. If alpha , beta and gamma the roots of the equation x^2(px + q) = r(x...

    Text Solution

    |

  11. If the system of equations x+a y=0,a z+y=0 and a x+z=0 has infinite so...

    Text Solution

    |

  12. If A+B+C =pi , then the value of determinant |{:(sin^2A,cotA,1),(sin^2...

    Text Solution

    |

  13. For A=a^2+b^2+c^2,B=ab+bc+ca,(a^3,b^3c^3-3abc)^2 is equal to

    Text Solution

    |

  14. If A, B, C are angle of a triangle ABC, then the value of the determi...

    Text Solution

    |

  15. If the expression |{:(x^2+x+3,1,4),(2x^4+x^3+2x+1,2,3),(x^2+x,1,1):}| ...

    Text Solution

    |

  16. The sum of two non integral roots of |{:(x,2,5),(3,x,3),(5,4,x):}|=0 i...

    Text Solution

    |

  17. |[1,1,1] , [(2^x+2^(-x))^2, (3^x+3^(-x))^2, (5^x+5^(-x))^2] , [(2^x-2^...

    Text Solution

    |

  18. There are three points (a,x) ,(b,y) and (c,z) such that the straight l...

    Text Solution

    |

  19. If |{:(overset(n-2)underset(k=0)sum1,n(n-1),n^2),(overset(n)underset(k...

    Text Solution

    |

  20. Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+...

    Text Solution

    |