Read the following comprehension carefully, Let `Delta ne 0 Delta^c` denotes the determinant of cofactors , then `Delta^c=Delta^(n-1)` where `n(gt 0)` is the order of `Delta`. if a,b,c are the roots of the equation `x^3-px^2+r=0` then the value of `|{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2,ab-c^2,bc-a^2),(ab-c^2,bc-c^2,ca-b^2):}|`
The roots of the equation a(b-2c)x^(2)+b(c-2a)x+c(a-2b)=0 are,when ab+bc+ca=0
The roots of the equation a(b-2x)x^(2)+b(c-2a)x+c(a-2b)=0 are, when ab+bc+ca=0
Let a, b and c are the roots of the equation x^(3)-7x^(2)+9x-13=0 and A and B are two matrices given by A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))] , then the value |A||B| is equal to
The value of the determinant |{:(1,a, a^(2)-bc),(1, b, b^(2)-ca),(1, c, c^(2)-ab):}| is…..