Home
Class 11
MATHS
If x=rsinthetasinphi, y=rsinthetacosphi,...

If x=`rsinthetasinphi, y=rsinthetacosphi, z=rcostheta`, then `x^(2)+y^(2)+z^(2)=?`

A

1

B

r

C

`r^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given the definitions of \( x \), \( y \), and \( z \): 1. **Given Definitions**: \[ x = r \sin \theta \sin \phi \] \[ y = r \sin \theta \cos \phi \] \[ z = r \cos \theta \] 2. **Calculate \( x^2 \)**: \[ x^2 = (r \sin \theta \sin \phi)^2 = r^2 \sin^2 \theta \sin^2 \phi \] 3. **Calculate \( y^2 \)**: \[ y^2 = (r \sin \theta \cos \phi)^2 = r^2 \sin^2 \theta \cos^2 \phi \] 4. **Calculate \( z^2 \)**: \[ z^2 = (r \cos \theta)^2 = r^2 \cos^2 \theta \] 5. **Combine \( x^2 + y^2 + z^2 \)**: \[ x^2 + y^2 + z^2 = r^2 \sin^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \] 6. **Factor out \( r^2 \)**: \[ x^2 + y^2 + z^2 = r^2 (\sin^2 \theta \sin^2 \phi + \sin^2 \theta \cos^2 \phi + \cos^2 \theta) \] 7. **Use the Pythagorean identity**: \[ \sin^2 \phi + \cos^2 \phi = 1 \] Therefore: \[ \sin^2 \theta (\sin^2 \phi + \cos^2 \phi) + \cos^2 \theta = \sin^2 \theta \cdot 1 + \cos^2 \theta = \sin^2 \theta + \cos^2 \theta = 1 \] 8. **Final Result**: \[ x^2 + y^2 + z^2 = r^2 \cdot 1 = r^2 \] Thus, the final answer is: \[ \boxed{r^2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3O|12 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=,0, show that x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]|=0

If x,y,z are all positive and x lt y lt z , then (x^(2))/zlt(x^(2)+y^(2)+z^(2))/(x+y+z)lt(z^(2))/x

Knowledge Check

  • If x =y =z, then ((x + y + z) ^(2))/(x ^(2) + y ^(2) + z ^(2)) is :

    A
    2
    B
    3
    C
    1
    D
    4
  • If x, y, z are real numbers such that x+y+z=4 and x^(2)+y^(2)+z^(2)=6, then x,y,z lie in :

    A
    `[(3)/(2),2]`
    B
    `[(2)/(3),2]`
    C
    `[0, (2)/(3)]`
    D
    none of these
  • If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

    A
    `(1)/(x^(2)+y^(2)+z^(2))`
    B
    1
    C
    `-1`
    D
    0
  • Similar Questions

    Explore conceptually related problems

    If x+y+z=0 , then what is the value of (1)/( x^(2) + y^(2) -z^(2) )+ (1)/( y^(2) +z^(2) -x^(2) )+ (1)/( z^(2) + x^(2) - y^(2) ) ?

    Factorise the following: x^(2) (y -z) + y^(2) ( z-x) + z^(2) (x-y)

    If x + y = 2z then (x)/(x-z) +(z)/(y-z) = ?

    Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+abs(z-x)^(2)=9 Then abs(x+y-z)^(2)-4x.y=

    x, y, z in R such that x^(2)+y^(2)+z^(2)=1 and alpha=x^(2)+2y^(2)+3z^(2)