Home
Class 11
MATHS
If x=rsinthetasinphi, y=rsinthetacosphi,...

If x=`rsinthetasinphi, y=rsinthetacosphi, z=rcostheta`, then `x^(2)+y^(2)+z^(2)=?`

A

1

B

r

C

`r^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 + z^2 \) given the definitions of \( x \), \( y \), and \( z \): 1. **Given Definitions**: \[ x = r \sin \theta \sin \phi \] \[ y = r \sin \theta \cos \phi \] \[ z = r \cos \theta \] 2. **Calculate \( x^2 \)**: \[ x^2 = (r \sin \theta \sin \phi)^2 = r^2 \sin^2 \theta \sin^2 \phi \] 3. **Calculate \( y^2 \)**: \[ y^2 = (r \sin \theta \cos \phi)^2 = r^2 \sin^2 \theta \cos^2 \phi \] 4. **Calculate \( z^2 \)**: \[ z^2 = (r \cos \theta)^2 = r^2 \cos^2 \theta \] 5. **Combine \( x^2 + y^2 + z^2 \)**: \[ x^2 + y^2 + z^2 = r^2 \sin^2 \theta \sin^2 \phi + r^2 \sin^2 \theta \cos^2 \phi + r^2 \cos^2 \theta \] 6. **Factor out \( r^2 \)**: \[ x^2 + y^2 + z^2 = r^2 (\sin^2 \theta \sin^2 \phi + \sin^2 \theta \cos^2 \phi + \cos^2 \theta) \] 7. **Use the Pythagorean identity**: \[ \sin^2 \phi + \cos^2 \phi = 1 \] Therefore: \[ \sin^2 \theta (\sin^2 \phi + \cos^2 \phi) + \cos^2 \theta = \sin^2 \theta \cdot 1 + \cos^2 \theta = \sin^2 \theta + \cos^2 \theta = 1 \] 8. **Final Result**: \[ x^2 + y^2 + z^2 = r^2 \cdot 1 = r^2 \] Thus, the final answer is: \[ \boxed{r^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3Q|21 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3O|12 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=,0, show that x,y,zx^(2),y^(2),z^(2)y+z,z+x,x+y]|=0

If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

If x + y = 2z then (x)/(x-z) +(z)/(y-z) = ?

Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+abs(z-x)^(2)=9 Then abs(x+y-z)^(2)-4x.y=