Home
Class 11
MATHS
The maximum value of 5costheta+3cos(thet...

The maximum value of `5costheta+3cos(theta+pi/3)+3` is:

A

5

B

11

C

10

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \(5 \cos \theta + 3 \cos(\theta + \frac{\pi}{3}) + 3\), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ f(\theta) = 5 \cos \theta + 3 \cos(\theta + \frac{\pi}{3}) + 3 \] ### Step 2: Expand the cosine term Using the cosine addition formula, we can expand \( \cos(\theta + \frac{\pi}{3}) \): \[ \cos(\theta + \frac{\pi}{3}) = \cos \theta \cos \frac{\pi}{3} - \sin \theta \sin \frac{\pi}{3} \] Substituting the values \( \cos \frac{\pi}{3} = \frac{1}{2} \) and \( \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \): \[ \cos(\theta + \frac{\pi}{3}) = \cos \theta \cdot \frac{1}{2} - \sin \theta \cdot \frac{\sqrt{3}}{2} \] ### Step 3: Substitute back into the expression Now substituting this back into our function: \[ f(\theta) = 5 \cos \theta + 3 \left(\frac{1}{2} \cos \theta - \frac{\sqrt{3}}{2} \sin \theta\right) + 3 \] This simplifies to: \[ f(\theta) = 5 \cos \theta + \frac{3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] Combining the cosine terms: \[ f(\theta) = \left(5 + \frac{3}{2}\right) \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] \[ f(\theta) = \frac{10 + 3}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] \[ f(\theta) = \frac{13}{2} \cos \theta - \frac{3\sqrt{3}}{2} \sin \theta + 3 \] ### Step 4: Identify coefficients for maximum value calculation Let \( a = \frac{13}{2} \) and \( b = -\frac{3\sqrt{3}}{2} \). The maximum value of the function \( f(\theta) = a \cos \theta + b \sin \theta + 3 \) can be found using the formula: \[ \text{Maximum value} = \sqrt{a^2 + b^2} + 3 \] ### Step 5: Calculate \( a^2 + b^2 \) Calculating \( a^2 \) and \( b^2 \): \[ a^2 = \left(\frac{13}{2}\right)^2 = \frac{169}{4} \] \[ b^2 = \left(-\frac{3\sqrt{3}}{2}\right)^2 = \frac{27}{4} \] Now, adding these: \[ a^2 + b^2 = \frac{169}{4} + \frac{27}{4} = \frac{196}{4} = 49 \] ### Step 6: Find the maximum value Taking the square root: \[ \sqrt{49} = 7 \] Thus, the maximum value of \( f(\theta) \) is: \[ 7 + 3 = 10 \] ### Final Answer The maximum value of \( 5 \cos \theta + 3 \cos(\theta + \frac{\pi}{3}) + 3 \) is: \[ \boxed{10} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.1|7 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3.2|10 Videos
  • TRIGNOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN|Exercise EXERCISES 3P|32 Videos
  • STRAIGHT LINES

    NAGEEN PRAKASHAN|Exercise Exercise|206 Videos

Similar Questions

Explore conceptually related problems

The maximum values of 4sin theta+3cos theta is

Prove that the value of 5 cos theta + 3cos (theta + pi/3) +3 lies between - 4 and 10.

Knowledge Check

  • The maximum value of 3cos theta+5 sin(theta-pi//6) for any real theta is :

    A
    `sqrt(19)`
    B
    `(1)/(2) sqrt(19)`
    C
    `sqrt(31)`
    D
    `sqrt(34)`
  • The maximum values of 3 costheta+5sin(theta-(pi)/(6)) for any real value of theta is:

    A
    `sqrt(1 9)`
    B
    `sqrt(79)/(2)`
    C
    `sqrt(31)`
    D
    `sqrt(34)`
  • The maximum and minimum values of -4le5cos theta+3cos(theta+(pi)/(3))+3le10 are respectively

    A
    `and -4`
    B
    `10 and -4`
    C
    `10 and -10`
    D
    `6and -4`
  • Similar Questions

    Explore conceptually related problems

    Prove that the value of 5 cos theta + 3cos (theta + pi/3) +3 lies between - 4 and 10.

    The maximum value of 5sin theta+3sin(theta+(pi)/(3))+3 is

    Prove that the value of 5 costheta+3 cos(theta+pi/3) lies between -7 and 7.

    5cos theta+3cos(theta-(pi)/(3))+8=

    Write the interval in which the values of 5cos theta+3cos(theta+(pi)/(3))+3 lie.