Home
Class 12
MATHS
IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] ...

IF `A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}]` then show that `adjA=3A^T` Also find `A^-1`

Answer

Step by step text solution for IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adjA=3A^T Also find A^-1 by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • IPE:MARCH-2019 (AP)

    SRISIRI PUBLICATION|Exercise SECTION - C|5 Videos
  • IPE:MARCH-2019 (AP)

    SRISIRI PUBLICATION|Exercise SECTION - A|8 Videos
  • IPE:MARCH-2018[TS]

    SRISIRI PUBLICATION|Exercise SECTION-C (LAQs)|8 Videos
  • IPE:MARCH-2019(AP)

    SRISIRI PUBLICATION|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

IF A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] then show that adj A=3A^T . Also find A^-1 .

If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)], then A^(T)

Knowledge Check

  • If A=[(-1,-2,-2),(2,1,-2),(2,-2,1)] then adjA=

    A
    A
    B
    `A^(T)`
    C
    `2A^(T)`
    D
    `3A^(T)`
  • If 3A=[(-1,2,2),(2,-1,2),(2,2,-1)] then

    A
    `"AA"^(T)=A^(T) A=I`
    B
    `"AA"^(T)=A^(T)A=O`
    C
    `"AA"^(T)=A^(T) A=-I`
    D
    none of these
  • If 3A=[(-1,2,2),(2,-1,2),(2,2,-1)] then

    A
    `A A^(T)=A^(T)A=I`
    B
    `A A^(T)=A^(T)A=-I`
    C
    `A A^(T)=A^(T)A=0`
    D
    `A A^(T)=A^(T)A=A`
  • Similar Questions

    Explore conceptually related problems

    IF 3A=[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A^-1=A' .

    IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2=4A-5I=O .

    IF A=[{:(1,2,2),(2,1,2),(2,2,1):}] then show that A^2-4A-5I=O .

    If A=[{:(-1,-2,-2),(2,1,-2),(2,-2,1):}] , then show that the ad joint of A = 3A' find A^(-1) .

    If 3A=[(1,2,2),(2,1,-2),(-2,2,-1)] then A^(-1)=