Home
Class 12
MATHS
Find the value of (.^(10)C(10))+(.^(10)C...

Find the value of `(.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the sum of several combinations. Let's denote the expression we want to evaluate as \( S \): \[ S = \binom{10}{10} + \left( \binom{10}{0} + \binom{10}{1} \right) + \left( \binom{10}{0} + \binom{10}{1} + \binom{10}{2} \right) + \ldots + \left( \binom{10}{0} + \binom{10}{1} + \ldots + \binom{10}{9} \right) \] ### Step 1: Rewrite the expression We can rewrite \( S \) more clearly by breaking it down: \[ S = \binom{10}{10} + \sum_{k=0}^{9} \sum_{j=0}^{k} \binom{10}{j} \] ### Step 2: Simplify the inner sum The inner sum \( \sum_{j=0}^{k} \binom{10}{j} \) represents the sum of the first \( k+1 \) terms of the binomial coefficients from \( \binom{10}{0} \) to \( \binom{10}{k} \). ### Step 3: Use the Binomial Theorem According to the Binomial Theorem, we know that: \[ \sum_{j=0}^{n} \binom{n}{j} = 2^n \] Thus, for \( n = 10 \): \[ \sum_{j=0}^{10} \binom{10}{j} = 2^{10} \] ### Step 4: Calculate the total contributions The total contributions can be calculated as follows: - The first term \( \binom{10}{10} = 1 \). - The second term \( \sum_{j=0}^{0} \binom{10}{j} = \binom{10}{0} = 1 \). - The third term \( \sum_{j=0}^{1} \binom{10}{j} = \binom{10}{0} + \binom{10}{1} = 1 + 10 = 11 \). - The fourth term \( \sum_{j=0}^{2} \binom{10}{j} = \binom{10}{0} + \binom{10}{1} + \binom{10}{2} = 1 + 10 + 45 = 56 \). - Continuing this way, we can see that the last term will be \( \sum_{j=0}^{9} \binom{10}{j} = 2^{10} - \binom{10}{10} = 1024 - 1 = 1023 \). ### Step 5: Combine all contributions Now, we can express \( S \) as: \[ S = 1 + 1 + 11 + 56 + \ldots + 1023 \] ### Step 6: Recognize the pattern Notice that the inner sums can be expressed as: \[ S = \sum_{k=0}^{10} \sum_{j=0}^{k} \binom{10}{j} = \sum_{k=0}^{9} (2^{10} - \binom{10}{10}) = 10 \cdot 2^{9} \] ### Final Calculation: Thus, the final value of \( S \) is: \[ S = 10 \cdot 2^{9} = 10 \cdot 512 = 5120 \] ### Conclusion The value of \( S \) is \( 5120 \). ---

To solve the problem, we need to calculate the sum of several combinations. Let's denote the expression we want to evaluate as \( S \): \[ S = \binom{10}{10} + \left( \binom{10}{0} + \binom{10}{1} \right) + \left( \binom{10}{0} + \binom{10}{1} + \binom{10}{2} \right) + \ldots + \left( \binom{10}{0} + \binom{10}{1} + \ldots + \binom{10}{9} \right) \] ### Step 1: Rewrite the expression ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.5|8 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

" 6.Find the value of "^(10)C_(5)+2*^(10)C_(4)+^(10)C_(3)

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is (A) 2^(21) - 2^(11) (B) 2^(21) - 2^(10) (C) 2^(20) - 2^(9) (D) 2^(20) - 2^(10)

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

2.^(10)C_(0)-^(10)C_(1)-^(10)C_(2)+2*^(10)C_(3)-^(10)C_(4)-^(10)C_(5)+2*^(10)C_(6)-^(10)C_(7)-^(10)C_(8) +2*^(10)C_(9)-^(10)C_(10)=

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is