Home
Class 12
MATHS
Prove that sum(r=0)^(n) r(n-r)C(r)^(2)=n...

Prove that `sum_(r=0)^(n) r(n-r)C_(r)^(2)=n^(2)(""^(2n-2)C_(n))`.

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr(n-r)(.^(n)C_(r))^(2) = underset(r=0)overset(n)sumr.^(n)C_(r)(n-r).^(n)C_(n-r)`
`=underset(r=0)overset(n)sumn.^(n-)C_(r-1)n.^(n-1)C_(n-r-1)`
`= n^(2)underset(r=0)overset(n)sum.^(n-1)C_(r-1).^(n-1)C_(n-r-1)`
`= n^(2) xx "coefficient of" x^(n-2) "in" (1+x)^(n-1)(1+x)^(n-1)`
`= n^(2) xx .^(2n-2)C_(n-2) = n^(2).^(2n-2)C_(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.6|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(n)^(r=0) ""^(n)C_(r)*3^(r)=4^(n).

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Evaluate sum_(r=0)^(n) ""^(n+r)C_(n) .