Home
Class 12
MATHS
Prove that (r+1)xx.^(n)C(0)-rxx.^(n)C(...

Prove that
`(r+1)xx.^(n)C_(0)-rxx.^(n)C_(1)+(r-1)xx.^(n)C_(2)-(r-2).^(n)C_(3) + "...."+(-1)^(r)xx.^(n)C_(r)+"...."=(-1)^(r)xx.^(n-2)C_(r)`.

Text Solution

Verified by Experts

`(r+1)xx.^(n)C_(0)-rxx.^(n)C_(1)+(r-1)xx.^(n)C_(2)-(r-2).^(n)C_(3)+"……"+(-1)^(r ) xx .^(n)C_(r ) + "….."`
`=` Coefficient of `x^(r )` in
`(.^(n)C_(0)--.^(n)C_(1)x+.^(n)C_(2)x^(2)-.^(n)C_(3)x^(3)+"…….."(-1)^(r)xx.^(n)C_(r )+"….") xx(1+2x+3x^(2)+4x^(3)+"....."(r+1)x^(r)+".....")`
`=` Coefficient of `x^(r)` in `(1-x)^(n)(1-x)^(2)`
= Coefficientof `x^(r)` in `(1-x)^(n-2)`
`= (-1)^(r)xx.^(n-2)C_(r )`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.7|9 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that (r+1)^(n)C_(r)-r^(n)C_(r)+(r-1)^(n)C_(2)-^(n)C_(3)+...+(-1)^(r)n_(C_(r))=(-1)^(r_(n-2))C_(r)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)