Home
Class 12
MATHS
For three non-zero vectors vec(a),\vec(b...

For three non-zero vectors `vec(a),\vec(b) " and"vec(c )`, prove that `[(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0`

Text Solution

Verified by Experts

The correct Answer is:
`=(veca-vecb).{(vecb-vecc)xx(vecc-veca)}`
`=(veca-vecb).{vecbxxvecc-vecbxxveca-veccxxvecc+veccxxveca)}`
`=(veca-vecb).{vecbxxvecc-vecbxxveca+vecxxveca}........(veccxxvecc=0)`
`=(veca-vecb).{vecbxxvecc+vecaxxvecb+vecxxveca}`
` =veca.(vecbxxvecc)+veca.(vecaxxvecb)+veca.(veccxxveca)-vecb.(vecbxxvecc)-vecb.(vecaxxvecb)-vecb.(vecxxveca)`
`=veca. (vecbxxvecc)+0+0-0-0-vecb.(veccxxveca)`
`=veca. (vecbxxvecc)-vecb.(veccxxveca)`
`=0`
(STP remains same if vectors `veca,vecb,vec` are changed in cyclic order)

`=(veca-vecb).{(vecb-vecc)xx(vecc-veca)}`
`=(veca-vecb).{vecbxxvecc-vecbxxveca-veccxxvecc+veccxxveca)}`
`=(veca-vecb).{vecbxxvecc-vecbxxveca+vecxxveca}........(veccxxvecc=0)`
`=(veca-vecb).{vecbxxvecc+vecaxxvecb+vecxxveca}`
` =veca.(vecbxxvecc)+veca.(vecaxxvecb)+veca.(veccxxveca)-vecb.(vecbxxvecc)-vecb.(vecaxxvecb)-vecb.(vecxxveca)`
`=veca. (vecbxxvecc)+0+0-0-0-vecb.(veccxxveca)`
`=veca. (vecbxxvecc)-vecb.(veccxxveca)`
`=0`
(STP remains same if vectors `veca,vecb,vec` are changed in cyclic order)
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section B 24B|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C|4 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section B|4 Videos
  • QUESTION PAPER 2023

    XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
  • XII Boards

    XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos

Similar Questions

Explore conceptually related problems

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec a + vec b + vec c = 0, prove that (vec a xx vec b) = (vec b xx vec c) = (vec c xx vec a)

Knowledge Check

  • Let vec(a),vec(b) and vec(c ) be three non-coplaner vectors and vec(p),vec(q),vec(r) be three vectors such that vec(p)=2vec(a)-vec(b)+vec(c ),vec(q)=vec(a)-3vec(b)+2vec(c),vec(r)=vec(a)+vec(b)-vec(c ) . If [vec(a)vec(b)vec(c)]=2 then [vec(p)vec(q)vec( r)] equals

    A
    6
    B
    -6
    C
    3
    D
    None of these
  • If vectors vec(a),vec(b),vec(c) are non-coplanar, then ([vec(a)+2vec(b).vec(b)+2vec(c).vec(c)+2vec(a)])/([vec(a).vec(b).vec(c)])=

    A
    3
    B
    9
    C
    8
    D
    6
  • If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

    A
    0
    B
    1
    C
    `-19`
    D
    38
  • Similar Questions

    Explore conceptually related problems

    Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

    For any three non-zero vectors vec a, vec b and vec c if | (vec a xxvec b) * vec c | = | vec a || vec b || vec c | then vec a * vec b + vec b * vec c + vec c * vec a =

    If for three non zero vectors vec a,vec b and vec cvec a*vec b=vec a.vec c and vec a xxvec b=vec a xxvec c, the show that vec b=vec c .

    For non-zero vectors vec a and vec b if |vec a+vec b|<|vec a-vec b|, then vec a and vec b are

    Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?