Home
Class 12
MATHS
If vec(a)+vec(b)+vec(c )=0 " and" |vec(a...

If `vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7`, then find the value of `vec(a),vec(b)+vec(b).vec(c )+vec(c ).vec(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given conditions: 1. \(\vec{a} + \vec{b} + \vec{c} = 0\) 2. \(|\vec{a}| = 3\) 3. \(|\vec{b}| = 5\) 4. \(|\vec{c}| = 7\) We need to find the value of \(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\). ### Step 1: Rewrite \(\vec{c}\) From the first equation, we can express \(\vec{c}\) in terms of \(\vec{a}\) and \(\vec{b}\): \[ \vec{c} = -(\vec{a} + \vec{b}) \] ### Step 2: Calculate \(|\vec{c}|\) Using the magnitude of \(\vec{c}\): \[ |\vec{c}| = |-(\vec{a} + \vec{b})| = |\vec{a} + \vec{b}| \] Since \(|\vec{c}| = 7\), we have: \[ |\vec{a} + \vec{b}| = 7 \] ### Step 3: Use the formula for the magnitude of a vector sum Using the formula for the magnitude of the sum of two vectors: \[ |\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \] Substituting the known magnitudes: \[ 7^2 = 3^2 + 5^2 + 2 \vec{a} \cdot \vec{b} \] Calculating the squares: \[ 49 = 9 + 25 + 2 \vec{a} \cdot \vec{b} \] \[ 49 = 34 + 2 \vec{a} \cdot \vec{b} \] \[ 2 \vec{a} \cdot \vec{b} = 49 - 34 = 15 \] \[ \vec{a} \cdot \vec{b} = \frac{15}{2} \] ### Step 4: Calculate \(\vec{b} \cdot \vec{c}\) Now, we can calculate \(\vec{b} \cdot \vec{c}\): \[ \vec{c} = -(\vec{a} + \vec{b}) \implies \vec{b} \cdot \vec{c} = \vec{b} \cdot -(\vec{a} + \vec{b}) = -(\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}) \] Substituting the values we have: \[ \vec{b} \cdot \vec{c} = -\left(\frac{15}{2} + 25\right) = -\left(\frac{15}{2} + \frac{50}{2}\right) = -\frac{65}{2} \] ### Step 5: Calculate \(\vec{c} \cdot \vec{a}\) Next, we calculate \(\vec{c} \cdot \vec{a}\): \[ \vec{c} \cdot \vec{a} = -(\vec{a} + \vec{b}) \cdot \vec{a} = -(\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a}) \] Substituting the values: \[ \vec{c} \cdot \vec{a} = -\left(9 + \frac{15}{2}\right) = -\left(9 + 7.5\right) = -16.5 = -\frac{33}{2} \] ### Step 6: Combine the results Now we can combine all the dot products: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{15}{2} - \frac{65}{2} - \frac{33}{2} \] Calculating: \[ = \frac{15 - 65 - 33}{2} = \frac{-83}{2} \] ### Final Answer Thus, the value of \(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\) is: \[ \boxed{-\frac{83}{2}} \]

To solve the problem, we start with the given conditions: 1. \(\vec{a} + \vec{b} + \vec{c} = 0\) 2. \(|\vec{a}| = 3\) 3. \(|\vec{b}| = 5\) 4. \(|\vec{c}| = 7\) We need to find the value of \(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C|4 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section C 28 A|1 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise Section B 24A|1 Videos
  • QUESTION PAPER 2023

    XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
  • XII Boards

    XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(a), vec(b) and vec(c ) satisfy the condition vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=3, |vec(b)| =4 and |vec(c )|=5 , then show that vec(a).vec(b)+vec(b).vec(c )+vec(c ). vec(a)=-25 .

If vec(a)=vec(b)+vec(c ) , then |vec(a)|=|vec(b)+vec(c )| .

Knowledge Check

  • If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

    A
    0
    B
    1
    C
    `-19`
    D
    38
  • Suppose vec(a)+vec(b)+vec(c)=0,|vec(a)|=3,|vec(b)|=5,|vec(c)|=7, then the angle between vec(a)andvec(b) is

    A
    `pi`
    B
    `(pi)/(2)`
    C
    `(pi)/(3)`
    D
    `(pi)/(4)`
  • Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

    A
    -332
    B
    -166
    C
    0
    D
    166
  • Similar Questions

    Explore conceptually related problems

    If vec a,vec b and vec c be three vectors such that vec a+vec b+vec c=0,|vec a|=1,|vec c|=3,|vec b|=2, Then find the value of vec a.vec b+vec b.vec c+vec c.vec a

    If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

    If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

    vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is vec (a). vec(b) + vec(b). vec(c) + vec(c). vec (a) equal to ?

    vec(a)+vec(b)+vec(c)=vec(0) such that |vec(a)|=3, |vec(b)|=5 and |vec(c)|=7 . What is |vec(a)+vec(b)| equal to ?