Home
Class 12
MATHS
|{:(1,cos alpha, cos beta),(cos alpha, 1...

`|{:(1,cos alpha, cos beta),(cos alpha, 1,cosgamma),(cosbeta,cosgamma,1):}|=|{:(0,cosalpha,cosbeta),(cosalpha,0,cosbeta),(cosbeta,cosgamma,0):}|`
if `cos^(2)alpha+cos^(2)beta+cos^(2)gamma=`

A

`1`

B

`2`

C

`3//2`

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
A

`(a)` `|{:(1,cos alpha, cos beta),(cos alpha, 1,cosgamma),(cosbeta,cosgamma,1):}|=|{:(0,cosalpha,cosbeta),(cosalpha,0,cosbeta),(cosbeta,cosgamma,0):}|`
`impliessin^(2)gamma-cosalpha(cosalpha-cosbetacosgamma)+cosbeta(cosalphacosgamma-cosbeta)`
`=-cosalpha(-cosbetacosgamma)+cosbeta(cosalphacosgamma)`
`impliessin^(2)gamma-cos^(2)alpha+2cosalphacosbetacosgamma-cos^(2)beta=2cosalphacosbetacosgamma`
`impliessin^(2)gamma=cos^(2)alpha+cos^(2)beta`
`impliescos^(2)alpha=cos^(2)beta+cos^(2)gamma=1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DETERMINANT

    CENGAGE|Exercise Multiple Correct Answer|5 Videos
  • DEFINITE INTEGRATION

    CENGAGE|Exercise JEE Advanced Previous Year|38 Videos
  • DETERMINANTS

    CENGAGE|Exercise Question Bank|23 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos gamma,cosbeta),(cosgamma,1,cos alpha),(cosbeta,cos alpha,1)|

Prove that |[cos alpha cos beta, cos alpha sin beta , sin alpha],[-sinbeta,cosbeta,0],[sinalpha cosbeta, sinalpha sinbeta, cos alpha]|=cos2alpha

Knowledge Check

  • If |{:(1,cos alpha, cos beta),(cos alpha, 1 , cos gamma ),(cos beta, cos gamma , 1):}|=|{:(0,cos alpha, cos beta),(cos alpha , 0 , cos gamma),(cos beta, cos gamma, 0):}| then the value of cos^2 alpha + cos^2 beta + cos^2 gamma is :

    A
    1
    B
    `1/2`
    C
    `3/8`
    D
    `9/4`
  • The value of |(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1)| is

    A
    `|(cosalpha,sinalpha,1),(cosbeta,sinbeta,1),(cosgamma,singamma,1)|^(2)`
    B
    `|(sinalpha,cosalpha,0),(sinbeta,cosbeta,0),(singamma,cosgamma,0)|^(2)`
    C
    `|(cosalpha,sinalpha,0),(sinbeta,0,cosbeta),(0,cosgamma,singamma)|^(2)`
    D
    none of these
  • The value of the determinant |(1, cos(alpha-beta),cosalpha),(cos(alpha-beta),1, cosbeta),(cosalpha, cosbeta, 1)| is:

    A
    0
    B
    1
    C
    `alpha^2-beta^2`
    D
    `alpha^2+beta^2`
  • Similar Questions

    Explore conceptually related problems

    If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then cos ^ (2) alpha + cos ^ (2) beta + cos ^ (2) gamma is

    vec A isa vector with direction cosines cosalpha,cosbetaa n dcosgammadot Assuming the y-z plane as a mirror, the directin cosines of the reflected image of vec A in the plane are a. cosalpha,cosbeta,cosgamma b. cosalpha,-cosbeta,cosgamma c. -cosalpha,cosbeta,cosgamma d. -cosalpha,-cosbeta,-cosgamma

    Prove that cos alpha+cos beta+cos gamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/(2))cos((beta+gamma)/(2))cos((gamma+alpha)/(2))

    The value of the determinant |(1, cos(alpha-beta),cosalpha),(cos(alpha-beta),1, cosbeta),(cosalpha, cosbeta, 1)| is:

    If cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0 , then the value of cos3alpha+cos3beta+cos3gamma is