Home
Class 11
MATHS
Find the parametric representation of th...

Find the parametric representation of the circles :
(i) `3x^(2) + 3y^(2) = 4 `.
`(ii) ( x - 2)^(2) + (y - 3)^(2) = 5 `.

Text Solution

AI Generated Solution

The correct Answer is:
To find the parametric representation of the given circles, we will follow a systematic approach for each equation. ### (i) For the circle given by the equation \(3x^2 + 3y^2 = 4\): 1. **Rewrite the equation in standard form**: \[ x^2 + y^2 = \frac{4}{3} \] This is the standard form of a circle centered at \((0, 0)\) with radius \(r = \sqrt{\frac{4}{3}} = \frac{2}{\sqrt{3}}\). 2. **Identify the center and radius**: - Center \((h, k) = (0, 0)\) - Radius \(r = \frac{2}{\sqrt{3}}\) 3. **Use the parametric equations for a circle**: The parametric representation of a circle is given by: \[ x = h + r \cos \theta \] \[ y = k + r \sin \theta \] Substituting the values of \(h\), \(k\), and \(r\): \[ x = 0 + \frac{2}{\sqrt{3}} \cos \theta = \frac{2}{\sqrt{3}} \cos \theta \] \[ y = 0 + \frac{2}{\sqrt{3}} \sin \theta = \frac{2}{\sqrt{3}} \sin \theta \] 4. **Final parametric representation**: Therefore, the parametric representation of the first circle is: \[ x = \frac{2}{\sqrt{3}} \cos \theta, \quad y = \frac{2}{\sqrt{3}} \sin \theta \] ### (ii) For the circle given by the equation \((x - 2)^2 + (y - 3)^2 = 5\): 1. **Identify the center and radius**: The equation is already in standard form: - Center \((h, k) = (2, 3)\) - Radius \(r = \sqrt{5}\) 2. **Use the parametric equations for a circle**: Using the same parametric representation: \[ x = h + r \cos \theta \] \[ y = k + r \sin \theta \] Substituting the values of \(h\), \(k\), and \(r\): \[ x = 2 + \sqrt{5} \cos \theta \] \[ y = 3 + \sqrt{5} \sin \theta \] 3. **Final parametric representation**: Therefore, the parametric representation of the second circle is: \[ x = 2 + \sqrt{5} \cos \theta, \quad y = 3 + \sqrt{5} \sin \theta \] ### Summary of Parametric Representations: 1. For the first circle: \[ x = \frac{2}{\sqrt{3}} \cos \theta, \quad y = \frac{2}{\sqrt{3}} \sin \theta \] 2. For the second circle: \[ x = 2 + \sqrt{5} \cos \theta, \quad y = 3 + \sqrt{5} \sin \theta \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (SHORT ANSWER TYPE QUESTIONS )|7 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (SHORT ANSWER TYPE QUESTIONS )|3 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (A) (LONG ANSWER TYPE QUESTIONS II )|10 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the parametric equation of the circles : x^2 +y^2 =9

The parametric representation of the circel (x-3) ^(2 ) + (y+4)^(2) =25 is

Find the parametric equations of that circles : 3x^2 + 3y^2 =4

Find the parametric representation of circles : (i) x^(2) + y^(2) + 12x - 4y - 1 = 0 (ii) x^(2) + y^(2) + 2gx + 2fy + c = 0 .

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric equations of the circles x^(2)+y^(2)=16 .

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric equation of the circles : (i) 2x^(2) + 2y^(2) - 5x - 7y - 3 = 0 (ii) 3x^(2) + 3y^(2) + 4x - 6y - 4 = 0 .

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0