Home
Class 11
MATHS
For the given ellipse ,find the equation...

For the given ellipse ,find the equation of directrix (i) `(x^(2))/(25) + (y^(2))/(9) = 1 `
iii `(x^(2))/(36) + (y^(2))/(16) = 1 `
`(x^(2))/(49) + (y^(2))/(36) = 1 `
(iv) `(x^(2))/(100) + (y^(2))/(400) = 1.`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equations of the directrices for the given ellipses, we will follow these steps for each ellipse: 1. Identify \( a^2 \) and \( b^2 \) from the given equation of the ellipse. 2. Determine whether \( a^2 > b^2 \) or \( b^2 > a^2 \) to decide which case to apply. 3. Calculate the eccentricity \( e \) using the appropriate formula. 4. Write the equation of the directrices based on the eccentricity and the values of \( a \) and \( b \). Let's solve each ellipse step by step. ### (i) For the ellipse \( \frac{x^2}{25} + \frac{y^2}{9} = 1 \) 1. Identify \( a^2 = 25 \) and \( b^2 = 9 \). Here, \( a = 5 \) and \( b = 3 \). 2. Since \( a^2 > b^2 \), we use the formula for the directrix: \( x = \pm \frac{a}{e} \). 3. Calculate eccentricity \( e \): \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} \] 4. Now, substitute \( a \) and \( e \) into the directrix equation: \[ x = \pm \frac{5}{\frac{4}{5}} = \pm \frac{5 \cdot 5}{4} = \pm \frac{25}{4} \] So, the equations of the directrices are: \[ x = \frac{25}{4} \quad \text{and} \quad x = -\frac{25}{4} \] ### (ii) For the ellipse \( \frac{x^2}{36} + \frac{y^2}{16} = 1 \) 1. Identify \( a^2 = 36 \) and \( b^2 = 16 \). Here, \( a = 6 \) and \( b = 4 \). 2. Since \( a^2 > b^2 \), we use the formula for the directrix: \( x = \pm \frac{a}{e} \). 3. Calculate eccentricity \( e \): \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{16}{36}} = \sqrt{\frac{20}{36}} = \frac{\sqrt{20}}{6} = \frac{2\sqrt{5}}{6} = \frac{\sqrt{5}}{3} \] 4. Now, substitute \( a \) and \( e \) into the directrix equation: \[ x = \pm \frac{6}{\frac{\sqrt{5}}{3}} = \pm \frac{6 \cdot 3}{\sqrt{5}} = \pm \frac{18}{\sqrt{5}} \] So, the equations of the directrices are: \[ x = \frac{18}{\sqrt{5}} \quad \text{and} \quad x = -\frac{18}{\sqrt{5}} \] ### (iii) For the ellipse \( \frac{x^2}{49} + \frac{y^2}{36} = 1 \) 1. Identify \( a^2 = 49 \) and \( b^2 = 36 \). Here, \( a = 7 \) and \( b = 6 \). 2. Since \( a^2 > b^2 \), we use the formula for the directrix: \( x = \pm \frac{a}{e} \). 3. Calculate eccentricity \( e \): \[ e = \sqrt{1 - \frac{b^2}{a^2}} = \sqrt{1 - \frac{36}{49}} = \sqrt{\frac{13}{49}} = \frac{\sqrt{13}}{7} \] 4. Now, substitute \( a \) and \( e \) into the directrix equation: \[ x = \pm \frac{7}{\frac{\sqrt{13}}{7}} = \pm \frac{7 \cdot 7}{\sqrt{13}} = \pm \frac{49}{\sqrt{13}} \] So, the equations of the directrices are: \[ x = \frac{49}{\sqrt{13}} \quad \text{and} \quad x = -\frac{49}{\sqrt{13}} \] ### (iv) For the ellipse \( \frac{x^2}{100} + \frac{y^2}{400} = 1 \) 1. Identify \( a^2 = 100 \) and \( b^2 = 400 \). Here, \( a = 10 \) and \( b = 20 \). 2. Since \( b^2 > a^2 \), we use the formula for the directrix: \( y = \pm \frac{b}{e} \). 3. Calculate eccentricity \( e \): \[ e = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{100}{400}} = \sqrt{\frac{300}{400}} = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] 4. Now, substitute \( b \) and \( e \) into the directrix equation: \[ y = \pm \frac{20}{\frac{\sqrt{3}}{2}} = \pm \frac{20 \cdot 2}{\sqrt{3}} = \pm \frac{40}{\sqrt{3}} \] So, the equations of the directrices are: \[ y = \frac{40}{\sqrt{3}} \quad \text{and} \quad y = -\frac{40}{\sqrt{3}} \] ### Summary of Directrices 1. For \( \frac{x^2}{25} + \frac{y^2}{9} = 1 \): \( x = \frac{25}{4}, x = -\frac{25}{4} \) 2. For \( \frac{x^2}{36} + \frac{y^2}{16} = 1 \): \( x = \frac{18}{\sqrt{5}}, x = -\frac{18}{\sqrt{5}} \) 3. For \( \frac{x^2}{49} + \frac{y^2}{36} = 1 \): \( x = \frac{49}{\sqrt{13}}, x = -\frac{49}{\sqrt{13}} \) 4. For \( \frac{x^2}{100} + \frac{y^2}{400} = 1 \): \( y = \frac{40}{\sqrt{3}}, y = -\frac{40}{\sqrt{3}} \)
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (F) (LONG ANSWER TYPE QUESTIONS II )|6 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (G) (LONG ANSWER TYPE QUESTIONS I )|2 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (LONG ANSWER TYPE QUESTIONS I )|4 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

For the following ellipse, find the equation of directrix (i) 9x^(2) + 4y^(2) = 36 (ii) 16x^(2) + 25y^(2) = 400 .

find the equation the directrix of given ellipse x^(2) + 16y^(2) = 16

Find the latus rectum of ellipse (x^(2))/(36) + (y^(2))/(16) = 1 .

The equation of a directrix of the parabola x^(2)/16+y^(2)/25=1 is

Find the equation of the directrices of the ellipse x^2/36+y^2/16=1

The equation of the chord of (x^(2))/(36)+(y^(2))/(9)=1 which is bisected at (2,1) is