Home
Class 12
MATHS
Evaluate : |{:(2,4),(-1,2):}|...

Evaluate : `|{:(2,4),(-1,2):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant of the given 2x2 matrix \(\begin{pmatrix} 2 & 4 \\ -1 & 2 \end{pmatrix}\), we will follow these steps: ### Step 1: Write the determinant We start by writing the determinant in the standard form: \[ |A| = \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} \] ### Step 2: Apply the determinant formula for a 2x2 matrix The formula for the determinant of a 2x2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by: \[ |A| = ad - bc \] In our case, \(a = 2\), \(b = 4\), \(c = -1\), and \(d = 2\). ### Step 3: Substitute the values into the formula Substituting the values into the determinant formula: \[ |A| = (2)(2) - (4)(-1) \] ### Step 4: Calculate the products Now we calculate the products: \[ |A| = 4 - (-4) \] ### Step 5: Simplify the expression Since subtracting a negative number is the same as adding a positive number, we have: \[ |A| = 4 + 4 \] ### Step 6: Final calculation Now, we can perform the final addition: \[ |A| = 8 \] Thus, the value of the determinant is: \[ \boxed{8} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.2)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(2,3,1),(4,6,2),(1,3,2):}|

Evaluate: (8.6)^(2)-(1.4)^(2)

Knowledge Check

  • PASSAGE-II: a^(m) xx a^(n) xx a^(-p) = (a^(m) xx a^(n) )/( a^(p)) Evaluate : ((1)/(2))^(-4) xx ((1)/(2))^(-8) xx ((1)/(2))^(2) + ((1)/(4))^(2) xx ((1)/(4) )^(-6) xx ((1)/(4))^(2)

    A
    `((1)/(2))^(-10)`
    B
    `((1)/(2))^(12) xx ((1)/(4))^(-1)`
    C
    `((1)/(2))^(-14) + ((1)/(4))^(0)`
    D
    `((1)/(2))^(12)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate abs([2,4,0],[-1,1,2],[0,-2,1])

    Find the adjoint of the matrix: [(2,-4),(-1,2)]

    Evaluate (1) 2^(-3) (2)(-4)^(-2) (3)1/3^(-2) (4)(1/2)^(-5)

    if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

    Evaluate : [ ( 1/2 )^-1 + ( 2/3 )^2 - ( 3/4 ) ]^(-2 )

    Evaluate: int_(-4)^(2) (1)/(x^(2) + 4x+13)dx

    Evaluate: int(2x-1)/(4x^2)e^(2x)dx