Home
Class 12
MATHS
Evaluate : |{:(2,4),(-1,2):}|...

Evaluate : `|{:(2,4),(-1,2):}|`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant of the given 2x2 matrix \(\begin{pmatrix} 2 & 4 \\ -1 & 2 \end{pmatrix}\), we will follow these steps: ### Step 1: Write the determinant We start by writing the determinant in the standard form: \[ |A| = \begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} \] ### Step 2: Apply the determinant formula for a 2x2 matrix The formula for the determinant of a 2x2 matrix \(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\) is given by: \[ |A| = ad - bc \] In our case, \(a = 2\), \(b = 4\), \(c = -1\), and \(d = 2\). ### Step 3: Substitute the values into the formula Substituting the values into the determinant formula: \[ |A| = (2)(2) - (4)(-1) \] ### Step 4: Calculate the products Now we calculate the products: \[ |A| = 4 - (-4) \] ### Step 5: Simplify the expression Since subtracting a negative number is the same as adding a positive number, we have: \[ |A| = 4 + 4 \] ### Step 6: Final calculation Now, we can perform the final addition: \[ |A| = 8 \] Thus, the value of the determinant is: \[ \boxed{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.1)|13 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.2)|19 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (True or False)|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants to evaluate : |{:(2,3,1),(4,6,2),(1,3,2):}|

Evaluate: (8.6)^(2)-(1.4)^(2)

Evaluate abs([2,4,0],[-1,1,2],[0,-2,1])

Find the adjoint of the matrix: [(2,-4),(-1,2)]

Evaluate (1) 2^(-3) (2)(-4)^(-2) (3)1/3^(-2) (4)(1/2)^(-5)

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

Evaluate : [ ( 1/2 )^-1 + ( 2/3 )^2 - ( 3/4 ) ]^(-2 )

Evaluate: int_(-4)^(2) (1)/(x^(2) + 4x+13)dx

Evaluate: int(2x-1)/(4x^2)e^(2x)dx

MODERN PUBLICATION-DETERMINANTS-OBJECTIVE TYPE QUESTIONS (Very short answer type question)
  1. Evaluate : |{:(2,4),(-1,2):}|

    Text Solution

    |

  2. Evaluate : |{:(-2,3),(4,-9):}|

    Text Solution

    |

  3. |["cos"70^(@), "sin"20^(@)], ["sin"70^(@), "cos"20^(@)]|=?

    Text Solution

    |

  4. Evaluate |["cos" 15^(@), "sin"15^(@)],["sin" 75^(@), "cos"75^(@)]|

    Text Solution

    |

  5. Evaluate : |{:(costheta,-sintheta),(sintheta,costheta):}|

    Text Solution

    |

  6. Evaluate : |{:(x,x+1),(x-1,x):}|

    Text Solution

    |

  7. |(x^(2)-x+1, x-1),(x+1,x+1)|

    Text Solution

    |

  8. If A is a3x3 matrix, |A| != 0 and |3A|=k|A| , then write the value of ...

    Text Solution

    |

  9. Let A be a square matric of order 3\ xx\ 3 . Write the value of 2A ...

    Text Solution

    |

  10. If A and B are square matrices of same order 3 , such that |A|=2 and A...

    Text Solution

    |

  11. Find the co-factor of the element a(23) of the determinant |{:(5,3,5),...

    Text Solution

    |

  12. Write the minor of 6 in |{:(1,2,3),(4,5,6),(7,8,9):}|

    Text Solution

    |

  13. Write the co-factor of 7 in |{:(4,5,6),(5,6,7),(13,15,17):}|

    Text Solution

    |

  14. For what value of x , is the following matrix singular ? [(3-2x,x+1)...

    Text Solution

    |

  15. For what value of x , the matrix [5-xx+1 2 4] is singular?

    Text Solution

    |

  16. For what value of 'x' the matrix [{:(2-x,3),(-5,-1):}] is not invertib...

    Text Solution

    |

  17. Find the adjoint of the following matrices : [{:(2,-1),(4,3):}]

    Text Solution

    |

  18. Find the adjoint of each of the matrices in questions 1 and 2. [{:(1...

    Text Solution

    |

  19. Find the adjoint of the following matrices : [{:(2,3),(1,4):}]

    Text Solution

    |

  20. If A=[{:(3,1),(2,-3):}], then find |adj.A|.

    Text Solution

    |