Home
Class 12
MATHS
Let a,b and c be such that (b+c) ne 0 ...

Let a,b and c be such that (b+c) `ne` 0 . If `|(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c-1),(a-1, b-1,c+1),((-1)^(n+2)a , (-1)^(n+1)b,(-1)^n c)|=0` , then the value of 'n' is :

A

zero

B

any integer

C

any odd integer

D

any integer

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Let a, b, c be such that b(a+c) ne0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c-1),(a-1,b-1,c+1),((-1)^(n+2)a,(-1)^(n+1)b,(-1)^(n)c)|=0 then the value of n is :

Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c+1)|+|(a+1,b+1,c+1),(a-1,b-1,c+1),((-1)^(n+2)a,(-1)^(n+1)b,(-1)^nc)|=0 then the value of n is

Knowledge Check

  • Let a , b, c be such that b (a + c) ne 0. If |{:(a, a+1, a- 1),(-b, b + 1, b- 1),(c, c -1, c+ 1):}| + |{:(a+ 1 , b+ 1,c -1),(a - 1,b - 1, c+ 1),((- 1)^(n+2)a, (-1)^(n+1)b, (-1)^(n) c):}| = 0 , then the value of n is

    A
    any integer
    B
    zero
    C
    any even integer
    D
    any odd integer
  • If a + (1)/(b) = 1 and b + (1)/(c) = 1, then the value of c + (1)/(a) is

    A
    9
    B
    1
    C
    `-1`
    D
    2
  • If a + (1)/( b) = b + (1)/( c) = c = (1)/( a) ( a ne b ne c) then the value of abc is

    A
    `pm 1`
    B
    `pm 2 `
    C
    0
    D
    `pm (1)/(2)`
  • Similar Questions

    Explore conceptually related problems

    Let a,b,c be such that b(a+c) ne 0 . If |(a,a+1,a-1),(-b,b+1,b-1),(c,c-1,c-1)|+|(a+1,b+1,c+1),(a-1,b-1,c+1),((-1)^(n+2)a,(-1)^(n+1)b,(-1)^nc)|=0 then the value of n is

    Let a, b, c be such that b(a""+""c)!=0 . If |a a+1a-1-bb+1b-1cc-1c+1|+|a+1b+1c-1a-1b-1c+1(-1)^(n+2)a(-1)^(n+1)b(-1)^n c|=0 then the value of n is (1) zero (2) any even integer (3) any odd integer (4) any integer

    Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

    Find |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}|

    If ( a + (1)/( b)) = 1 and ( b + (1)/(c)) = 1 then the value of (c + (1)/( a)) is