Home
Class 12
MATHS
int0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(...

`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx`

Answer

Step by step text solution for int_0^(pi/2) sqrt(sinx)/(sqrt(sinx)+sqrt(cosx))dx by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

Evaluate int_0^(pi/2) sqrt(cosx)/(sqrt(cosx)+sqrt(sinx))dx

Knowledge Check

  • int_(pi//6)^(pi//3)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx=(k)/(4) , then the value of k equals

    A
    `pi//12`
    B
    `pi//3`
    C
    `pi//2`
    D
    none of these
  • int_((pi)/(18))^((4pi)/(9))(2sqrt(sinx))/(sqrt(sinx)+sqrt(cosx))dx= . . .

    A
    `(7pi)/(36)`
    B
    `(5pi)/(36)`
    C
    `(7pi)/(18)`
    D
    `(5pi)/(18)`
  • int(sinx)/(sqrt(cos2x))dx=

    A
    `(-1)/(sqrt2)log[sqrt2 cos x+sqrt(cos2x)]+c`
    B
    `(-1)/(sqrt2)log[sqrt2 cos x+sqrt(2sin^(2)x-1)]+c`
    C
    `(-1)/(sqrt2)log[sqrt2 cos x+sqrt(1-2cos^(2)x)]+c`
    D
    `(-1)/(sqrt2)sec^(-1)(2cos^(2)x-1)+c`
  • Similar Questions

    Explore conceptually related problems

    Evalaute int_(pi//6)^(pi//3)(sqrt((sinx))dx)/(sqrt((sinx))+sqrt((cosx)))

    int_(0)^(pi//2)sqrt(1+sinx)dx

    int_(0)^(pi//2)(sqrt(cosx))/((sqrt(cosx)+sqrt(sinx)))dx=?

    I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) - I_(2) equal to ?

    I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?