Home
Class 12
MATHS
The antiderivative of (sqrtx+1/sqrtx) eq...

The antiderivative of `(sqrtx+1/sqrtx)` equals:

A

`1/3x^(1/3)+2x^(1/2)+c`

B

`2/3x^(2/3)+1/2x^2+c`

C

`2/3x^(3/2)+2x^(1/2)+c`

D

`3/2x^(3/2)+1/2x^(1/2) +c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the antiderivative of the function \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we will follow these steps: ### Step 1: Rewrite the Function First, we rewrite \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) in terms of exponents: \[ \sqrt{x} = x^{1/2} \quad \text{and} \quad \frac{1}{\sqrt{x}} = x^{-1/2} \] Thus, the function can be expressed as: \[ x^{1/2} + x^{-1/2} \] ### Step 2: Set Up the Integral Now, we need to find the integral of the function: \[ \int \left( x^{1/2} + x^{-1/2} \right) \, dx \] ### Step 3: Integrate Each Term We can integrate each term separately using the power rule for integration, which states: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] Applying this to each term: 1. For \( x^{1/2} \): \[ \int x^{1/2} \, dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] 2. For \( x^{-1/2} \): \[ \int x^{-1/2} \, dx = \frac{x^{-1/2 + 1}}{-1/2 + 1} = \frac{x^{1/2}}{1/2} = 2 x^{1/2} \] ### Step 4: Combine the Results Now, we combine the results of the integrals: \[ \int \left( x^{1/2} + x^{-1/2} \right) \, dx = \frac{2}{3} x^{3/2} + 2 x^{1/2} + C \] ### Final Answer Thus, the antiderivative of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ \frac{2}{3} x^{3/2} + 2 x^{1/2} + C \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

y = sqrtx + 1/sqrtx

y = x+sqrtx+1/sqrtx

Knowledge Check

  • f(x)=sqrtx-(1)/(sqrtx)

    A
    `I_(1)=(0, infty), I_(2)= phi`
    B
    `I_(1) = phi , I_(2)=(0, infty)`
    C
    `I_(1)= phi, I_(2)=(- infty, 0)`
    D
    none of these
  • If x =3 + 2 sqrt2, then the value of (sqrtx - (1)/(sqrtx)) is :

    A
    1
    B
    2
    C
    `2 sqrt2`
    D
    `3sqrt3`
  • If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

    A
    `sqrt6`
    B
    `2sqrt6`
    C
    6
    D
    `sqrt3`
  • Similar Questions

    Explore conceptually related problems

    log_(sqrtx)sqrtx=?

    (sin sqrtx)/(sqrtx).

    If x = 7 + 2 sqrt10 , then what is the value of sqrtx - 1/sqrtx ?

    int sqrtx e^(sqrtx) dx is equal to

    int(sqrtx+1/sqrtx)^2 dx=