Home
Class 12
MATHS
The antiderivative of (sqrtx+1/sqrtx) eq...

The antiderivative of `(sqrtx+1/sqrtx)` equals:

A

`1/3x^(1/3)+2x^(1/2)+c`

B

`2/3x^(2/3)+1/2x^2+c`

C

`2/3x^(3/2)+2x^(1/2)+c`

D

`3/2x^(3/2)+1/2x^(1/2) +c`

Text Solution

AI Generated Solution

The correct Answer is:
To find the antiderivative of the function \( \sqrt{x} + \frac{1}{\sqrt{x}} \), we will follow these steps: ### Step 1: Rewrite the Function First, we rewrite \( \sqrt{x} \) and \( \frac{1}{\sqrt{x}} \) in terms of exponents: \[ \sqrt{x} = x^{1/2} \quad \text{and} \quad \frac{1}{\sqrt{x}} = x^{-1/2} \] Thus, the function can be expressed as: \[ x^{1/2} + x^{-1/2} \] ### Step 2: Set Up the Integral Now, we need to find the integral of the function: \[ \int \left( x^{1/2} + x^{-1/2} \right) \, dx \] ### Step 3: Integrate Each Term We can integrate each term separately using the power rule for integration, which states: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] Applying this to each term: 1. For \( x^{1/2} \): \[ \int x^{1/2} \, dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] 2. For \( x^{-1/2} \): \[ \int x^{-1/2} \, dx = \frac{x^{-1/2 + 1}}{-1/2 + 1} = \frac{x^{1/2}}{1/2} = 2 x^{1/2} \] ### Step 4: Combine the Results Now, we combine the results of the integrals: \[ \int \left( x^{1/2} + x^{-1/2} \right) \, dx = \frac{2}{3} x^{3/2} + 2 x^{1/2} + C \] ### Final Answer Thus, the antiderivative of \( \sqrt{x} + \frac{1}{\sqrt{x}} \) is: \[ \frac{2}{3} x^{3/2} + 2 x^{1/2} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

y = sqrtx + 1/sqrtx

y = x+sqrtx+1/sqrtx

f(x)=sqrtx-(1)/(sqrtx)

log_(sqrtx)sqrtx=?

(sin sqrtx)/(sqrtx).

If x = 2 + sqrt3 then the value of sqrtx + 1/sqrtx is

int(sqrtx+1/sqrtx)^2 dx=

MODERN PUBLICATION-INTEGRALS-MULTIPLE CHOICE QUESTION
  1. The antiderivative of (sqrtx+1/sqrtx) equals:

    Text Solution

    |

  2. If d/(dx)[f(x)]=4x^3-3/x^4 solve that f(2)=0 then find f(x)

    Text Solution

    |

  3. int(10 x^9+10 x^x(log)(e^(10))dx)/(x^(10)+10^x)equals(A) 10^x-x^(10)+C...

    Text Solution

    |

  4. int dx/(sin^2 x cos^2 x) equals

    Text Solution

    |

  5. int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

    Text Solution

    |

  6. int(e^(x)(1+x))/(cos^(2)(e^(x)x))dx equal to

    Text Solution

    |

  7. int(dx)/(x^2+2x+2)equals(A) xtan^(-1)(x+1)+C (B) tan^(-1)(x+1)+C(C) (...

    Text Solution

    |

  8. int(dx)/(sqrt(9x-4x^2))equals(A) 1/9sin^(-1)((9x-8)/8)+C (B) 1/2sin^(...

    Text Solution

    |

  9. int(x dx)/((x-1)(x-2)equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2...

    Text Solution

    |

  10. int(dx)/(x(x^2+1)equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^...

    Text Solution

    |

  11. Choose the correct answer intx^2e^x^3dx equals (A) 1/3e^x^3+C (B) ...

    Text Solution

    |

  12. inte^(x)secx(1+tanx)dx=?

    Text Solution

    |

  13. Choose the correct answer intsqrt(a+x^2)dx is equal to (A) x/2sqrt(...

    Text Solution

    |

  14. int sqrt(x^2-8x+7) is equal to

    Text Solution

    |

  15. int1^(sqrt(3))1/(1+x^2)dx is equal to pi/(12) b. pi/4 c. pi/6 d. pi/3

    Text Solution

    |

  16. int0^(2//3) (dx)/(4x+9x^2) equals:

    Text Solution

    |

  17. The value of the integral overset(1)underset(1//3)int((x-x^(3))^(1//...

    Text Solution

    |

  18. If f(x) = int (0)^(x) t sin t d t, then f'(x) is

    Text Solution

    |

  19. The value of int(-pi//2)^(pi//2) \ (x^3 + x cos x + tan^5 x + 1)dx is ...

    Text Solution

    |

  20. The value of int0^(pi//2) log ((4+3 sin x)/(4+3 cos x)) dx is:

    Text Solution

    |