If `A=[(2,-1),(4,2)],B=[(4,3),(-2,1)]` and `C=[(-2,-3),(-1,2)]`, find each of the following :
(i) `2B+3C`
(ii) `-2A+(B+C)`
(iii) `(2A-3B)-C`
(iv) `A+(2B-C)`
(v) `A+(B+C)`
(vi) `(A+B)+C`.
If `A=[(2,-1),(4,2)],B=[(4,3),(-2,1)]` and `C=[(-2,-3),(-1,2)]`, find each of the following :
(i) `2B+3C`
(ii) `-2A+(B+C)`
(iii) `(2A-3B)-C`
(iv) `A+(2B-C)`
(v) `A+(B+C)`
(vi) `(A+B)+C`.
(i) `2B+3C`
(ii) `-2A+(B+C)`
(iii) `(2A-3B)-C`
(iv) `A+(2B-C)`
(v) `A+(B+C)`
(vi) `(A+B)+C`.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the given problem, we will perform matrix operations step by step for each part of the question.
Given matrices:
- \( A = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} \)
- \( B = \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} \)
- \( C = \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} \)
### (i) Calculate \( 2B + 3C \)
1. **Calculate \( 2B \)**:
\[
2B = 2 \times \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ -4 & 2 \end{pmatrix}
\]
2. **Calculate \( 3C \)**:
\[
3C = 3 \times \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -6 & -9 \\ -3 & 6 \end{pmatrix}
\]
3. **Add \( 2B \) and \( 3C \)**:
\[
2B + 3C = \begin{pmatrix} 8 & 6 \\ -4 & 2 \end{pmatrix} + \begin{pmatrix} -6 & -9 \\ -3 & 6 \end{pmatrix} = \begin{pmatrix} 8 - 6 & 6 - 9 \\ -4 - 3 & 2 + 6 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -7 & 8 \end{pmatrix}
\]
### (ii) Calculate \( -2A + (B + C) \)
1. **Calculate \( B + C \)**:
\[
B + C = \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} + \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 4 - 2 & 3 - 3 \\ -2 - 1 & 1 + 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -3 & 3 \end{pmatrix}
\]
2. **Calculate \( -2A \)**:
\[
-2A = -2 \times \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 2 \\ -8 & -4 \end{pmatrix}
\]
3. **Add \( -2A \) and \( (B + C) \)**:
\[
-2A + (B + C) = \begin{pmatrix} -4 & 2 \\ -8 & -4 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} -4 + 2 & 2 + 0 \\ -8 - 3 & -4 + 3 \end{pmatrix} = \begin{pmatrix} -2 & 2 \\ -11 & -1 \end{pmatrix}
\]
### (iii) Calculate \( (2A - 3B) - C \)
1. **Calculate \( 2A \)**:
\[
2A = 2 \times \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ 8 & 4 \end{pmatrix}
\]
2. **Calculate \( 3B \)**:
\[
3B = 3 \times \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 9 \\ -6 & 3 \end{pmatrix}
\]
3. **Calculate \( 2A - 3B \)**:
\[
2A - 3B = \begin{pmatrix} 4 & -2 \\ 8 & 4 \end{pmatrix} - \begin{pmatrix} 12 & 9 \\ -6 & 3 \end{pmatrix} = \begin{pmatrix} 4 - 12 & -2 - 9 \\ 8 + 6 & 4 - 3 \end{pmatrix} = \begin{pmatrix} -8 & -11 \\ 14 & 1 \end{pmatrix}
\]
4. **Subtract \( C \)**:
\[
(2A - 3B) - C = \begin{pmatrix} -8 & -11 \\ 14 & 1 \end{pmatrix} - \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} -8 + 2 & -11 + 3 \\ 14 + 1 & 1 - 2 \end{pmatrix} = \begin{pmatrix} -6 & -8 \\ 15 & -1 \end{pmatrix}
\]
### (iv) Calculate \( A + (2B - C) \)
1. **Calculate \( 2B \)** (already calculated):
\[
2B = \begin{pmatrix} 8 & 6 \\ -4 & 2 \end{pmatrix}
\]
2. **Subtract \( C \)**:
\[
2B - C = \begin{pmatrix} 8 & 6 \\ -4 & 2 \end{pmatrix} - \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 8 + 2 & 6 + 3 \\ -4 + 1 & 2 - 2 \end{pmatrix} = \begin{pmatrix} 10 & 9 \\ -3 & 0 \end{pmatrix}
\]
3. **Add \( A \)**:
\[
A + (2B - C) = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} 10 & 9 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 2 + 10 & -1 + 9 \\ 4 - 3 & 2 + 0 \end{pmatrix} = \begin{pmatrix} 12 & 8 \\ 1 & 2 \end{pmatrix}
\]
### (v) Calculate \( A + (B + C) \)
1. **Use \( B + C \)** (already calculated):
\[
B + C = \begin{pmatrix} 2 & 0 \\ -3 & 3 \end{pmatrix}
\]
2. **Add \( A \)**:
\[
A + (B + C) = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} 2 & 0 \\ -3 & 3 \end{pmatrix} = \begin{pmatrix} 2 + 2 & -1 + 0 \\ 4 - 3 & 2 + 3 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 1 & 5 \end{pmatrix}
\]
### (vi) Calculate \( (A + B) + C \)
1. **Calculate \( A + B \)**:
\[
A + B = \begin{pmatrix} 2 & -1 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 2 + 4 & -1 + 3 \\ 4 - 2 & 2 + 1 \end{pmatrix} = \begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}
\]
2. **Add \( C \)**:
\[
(A + B) + C = \begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} -2 & -3 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} 6 - 2 & 2 - 3 \\ 2 - 1 & 3 + 2 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 1 & 5 \end{pmatrix}
\]
### Summary of Results:
1. \( 2B + 3C = \begin{pmatrix} 2 & -3 \\ -7 & 8 \end{pmatrix} \)
2. \( -2A + (B + C) = \begin{pmatrix} -2 & 2 \\ -11 & -1 \end{pmatrix} \)
3. \( (2A - 3B) - C = \begin{pmatrix} -6 & -8 \\ 15 & -1 \end{pmatrix} \)
4. \( A + (2B - C) = \begin{pmatrix} 12 & 8 \\ 1 & 2 \end{pmatrix} \)
5. \( A + (B + C) = \begin{pmatrix} 4 & -1 \\ 1 & 5 \end{pmatrix} \)
6. \( (A + B) + C = \begin{pmatrix} 4 & -1 \\ 1 & 5 \end{pmatrix} \)
Topper's Solved these Questions
MATRICES
MODERN PUBLICATION|Exercise Exercise 3 (d ) Short Answer Type Questions|20 VideosMATRICES
MODERN PUBLICATION|Exercise Exercise 3 (d) Long Answer Type Questions I|28 VideosMATRICES
MODERN PUBLICATION|Exercise Exercise 3 (c ) Short Answer Type Questions|11 VideosLINEAR PROGRAMMING
MODERN PUBLICATION|Exercise Chapter Test|12 VideosPROBABILITY
MODERN PUBLICATION|Exercise MOCK TEST SECTION D|6 Videos
Similar Questions
Explore conceptually related problems
A=[{:(2,4),(3,2):}],B=[{:(1,3),(-2,5):}],C=[{:(-2,5),(3,4):}] find each of the following : (i) A+B (ii) A-B (iii) 3A-C (iv) AB (V) BA
If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: -2A+(B+C)
If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: A+(2B-C)
If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , comopute the following: A+(B+C)
If A=[[2,-1],[4,2]],B=[[4,3],[-2,1]],C=[[-2,-3],[-1,2]] , compute the following: (A+B)+C
Let A=[2432],B=[13-25] and C=[-2534]. Find each of the following: 2A-3B( ii) B-4C( iii) 3A-C (iv) 3A-2B+3C
If A={1,2,3,4},B={2,3,4,5} and C={4,5,6,7} , then find each of the following : (i) A - (B-C) (ii) (A- B) -C .
If A = {1,2,3,4},B={2,4,6,8} and C={3,4,5,6} , then find each of the following , (i) (A - B) cap C (ii) (A cap B) -C (iii) A- (B-C) (iv) A cup (B - C) .
If A=[(1,2,3),(-1,0,2),(1,-8,-1)],B=[(4,5,6),(-1,0,1),(2,1,2)],C=[(-1,-2,1),(-1,2,3),(-1,-2,2)] , find (i) 2B-3C (ii) A-2B+3C .