Home
Class 12
MATHS
int cot^(2) x dx = ?...

`int cot^(2) x dx = ?`

A

`-cot x -x + C`

B

`cot x-x + C`

C

`-cotx + x + C`

D

`cot x + x + C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \cot^2 x \, dx \), we can use the identity relating cotangent to cosecant. Here’s a step-by-step solution: ### Step 1: Use the identity for cotangent Recall that: \[ \cot^2 x = \csc^2 x - 1 \] This allows us to rewrite the integral: \[ \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \cot^2 x \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] ### Step 3: Integrate each term 1. The integral of \( \csc^2 x \) is: \[ \int \csc^2 x \, dx = -\cot x + C_1 \] 2. The integral of \( 1 \) is: \[ \int 1 \, dx = x + C_2 \] ### Step 4: Combine the results Putting it all together: \[ \int \cot^2 x \, dx = (-\cot x + C_1) - (x + C_2) \] Simplifying this gives: \[ \int \cot^2 x \, dx = -\cot x - x + C \] where \( C = C_1 - C_2 \) is the constant of integration. ### Final Answer Thus, the integral is: \[ \int \cot^2 x \, dx = -\cot x - x + C \] ---

To solve the integral \( \int \cot^2 x \, dx \), we can use the identity relating cotangent to cosecant. Here’s a step-by-step solution: ### Step 1: Use the identity for cotangent Recall that: \[ \cot^2 x = \csc^2 x - 1 \] This allows us to rewrite the integral: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    RS AGGARWAL|Exercise Exercise 12|32 Videos
  • HOMOGENEOUS DIFFERENTIAL EQUATION

    RS AGGARWAL|Exercise Exercise 20|30 Videos
  • INTEGRATION USING PARTIAL FRACTIONS

    RS AGGARWAL|Exercise Objective Questions Ii|37 Videos

Similar Questions

Explore conceptually related problems

int(x cot^(2)x)dx

int (2+cot^(2) x) dx

Knowledge Check

  • int_(pi//4)^(pi//2)cot^(2)x dx =

    A
    `(pi-4)/(4)`
    B
    `1-(pi)/(4)`
    C
    `1-(pi)/(2)`
    D
    `(pi)/(8)`
  • The value of int (cot x )/( sqrt ( 5 + 9 cot ^(2) x )) dx is equal to (where C is constant of integration.)

    A
    `(1)/(2) sin ^(-1) ((2 sin x )/(3)) + C`
    B
    `(1)/(2) sin ^(-1) (( 3 sin x)/(2)) + C`
    C
    `(1)/(3) sin ^(-1 ) (( 3 sin x )/(2)) + C`
    D
    `(1)/(3) sin ^(-1) ((2 sin x )/(3)) + C`
  • Similar Questions

    Explore conceptually related problems

    int cosec^2 x dx=- cot x

    int (cot ^ (2) x) / (cot EC ^ (2) + cos ecx x) dx =

    If (cot x+(cot^(2)x)/(2)+(cot^(3)x)/(3)+...+(cot^(99)x)/(99))+ int(1+cot x)(1+cot^(99)x)dx =-lambda[int cot^(2)xdx+int cot^(3)xdx+int cot^(4)xdx+...+int cot^(98)xdx] , then value of lambda is equal to

    int sqrt(cot x)dx

    int cot^(2)((x)/(2))dx

    (i) int (tanx + cot x)^(2) dx , (ii) int((1+2 sinx)/(cos^(2)x))dx , (iii) int ((3cosx+4)/(sin^(2)x))dx