Home
Class 12
MATHS
int(dx)/((sinx-2cosx)(2sinx+cosx))...

`int(dx)/((sinx-2cosx)(2sinx+cosx))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(\sin x - 2\cos x)(2\sin x + \cos x)}, \] we will follow these steps: ### Step 1: Simplify the Denominator First, we will expand the denominator: \[ (\sin x - 2\cos x)(2\sin x + \cos x) = 2\sin^2 x + \sin x \cos x - 4\sin x \cos x - 2\cos^2 x. \] This simplifies to: \[ 2\sin^2 x - 3\sin x \cos x - 2\cos^2 x. \] ### Step 2: Rewrite the Integral Now we rewrite the integral: \[ I = \int \frac{dx}{2\sin^2 x - 3\sin x \cos x - 2\cos^2 x}. \] ### Step 3: Divide by \(\cos^2 x\) To simplify further, we divide the entire expression by \(\cos^2 x\): \[ I = \int \frac{\sec^2 x \, dx}{2\tan^2 x - 3\tan x - 2}. \] Let \(t = \tan x\), then \(dt = \sec^2 x \, dx\). Thus, we can rewrite the integral as: \[ I = \int \frac{dt}{2t^2 - 3t - 2}. \] ### Step 4: Factor the Quadratic Next, we need to factor the quadratic in the denominator: \[ 2t^2 - 3t - 2 = (2t + 1)(t - 2). \] ### Step 5: Use Partial Fraction Decomposition Now we can express the integral using partial fractions: \[ \frac{1}{(2t + 1)(t - 2)} = \frac{A}{2t + 1} + \frac{B}{t - 2}. \] Multiplying through by the denominator gives: \[ 1 = A(t - 2) + B(2t + 1). \] Expanding and equating coefficients, we can solve for \(A\) and \(B\). ### Step 6: Solve for A and B Setting up the equations, we find: 1. \(A + 2B = 0\) 2. \(-2A + B = 1\) From the first equation, \(A = -2B\). Substituting into the second gives: \(-2(-2B) + B = 1 \Rightarrow 4B + B = 1 \Rightarrow 5B = 1 \Rightarrow B = \frac{1}{5}\). Then substituting back, \(A = -\frac{2}{5}\). ### Step 7: Rewrite the Integral Now we can rewrite the integral: \[ I = \int \left( -\frac{2}{5(2t + 1)} + \frac{1}{5(t - 2)} \right) dt. \] ### Step 8: Integrate Integrating term by term: \[ I = -\frac{2}{5} \ln |2t + 1| + \frac{1}{5} \ln |t - 2| + C. \] ### Step 9: Substitute Back Substituting back \(t = \tan x\): \[ I = -\frac{2}{5} \ln |2\tan x + 1| + \frac{1}{5} \ln |\tan x - 2| + C. \] ### Final Step: Combine the Logarithms Combining the logarithmic terms gives: \[ I = \frac{1}{5} \ln \left| \frac{\tan x - 2}{2\tan x + 1} \right| + C. \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{5} \ln \left| \frac{\tan x - 2}{2\tan x + 1} \right| + C. \]

To solve the integral \[ I = \int \frac{dx}{(\sin x - 2\cos x)(2\sin x + \cos x)}, \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14B|44 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sinx-cosx)=

int (dx)/(sinx cosx)=

Knowledge Check

  • int(dx)/(2sinx-cosx+3)=

    A
    `tan^(-1)(tan((x)/(2))+1)+c`
    B
    `(1)/(2)tan^(-1)(tan((x)/(2))+1)+c`
    C
    `tan^(-1)(2tan((x)/(2))+1)+c`
    D
    `2tan^(-1)(tan((x)/(2))+1)+c`
  • int(dx)/(1+2sinx+cosx)

    A
    `log(2sinx+cosx)=`
    B
    `log(2+2tan""(x)/(2))+c`
    C
    `(1)/(2)log(1-2tan""(x)/(2))+c`
    D
    `(1)/(2)log(1+2tan""(x)/(2))+c`
  • int(dx)/(1-sinx+cosx)=

    A
    `log|(tan((x)/(2))+1)|+c`
    B
    `-log|(tan((x)/(2))+1)|+c`
    C
    `log|(tan((x)/(2))-1)|+c`
    D
    `-log|(tan((x)/(2))-1)|+c`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(sinx+cosx)=

    int(dx)/(sinx+cosx)=

    int(1)/(sinx-cosx)dx=

    int(dx)/((sinx+cosx)(2cosx+sinx))=

    int(dx)/(3sinx+2cosx+3)=