Home
Class 12
MATHS
int(dx)/(sqrt(16-x^(2)))...

`int(dx)/(sqrt(16-x^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{\sqrt{16 - x^2}} \), we can follow these steps: ### Step 1: Rewrite the Integral We recognize that \( 16 \) can be expressed as \( 4^2 \). Thus, we can rewrite the integral as: \[ \int \frac{dx}{\sqrt{4^2 - x^2}} \] ### Step 2: Identify the Formula This integral resembles the standard form: \[ \int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1}\left(\frac{x}{a}\right) + C \] where \( a = 4 \). ### Step 3: Apply the Formula Using the formula, we can substitute \( a = 4 \) into our integral: \[ \int \frac{dx}{\sqrt{4^2 - x^2}} = \sin^{-1}\left(\frac{x}{4}\right) + C \] ### Step 4: Write the Final Answer Thus, the final answer for the integral is: \[ \int \frac{dx}{\sqrt{16 - x^2}} = \sin^{-1}\left(\frac{x}{4}\right) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14A|40 Videos
  • SCALAR, OR DOT, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 23|34 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Objective Questions|19 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sqrt(16-9x^(2)))

int(dx)/(sqrt(2x-x^(2)))

Knowledge Check

  • int(dx)/(sqrt(16-4x^(2)))=?

    A
    `(1)/(2) sin ^(-1)""(x)/(2)+C`
    B
    `(1)/(4) sin ^(-1)""(x)/(2)+C`
    C
    `(1)/(2) sin ^(-1)""(x)/(4)+C`
    D
    None of these
  • if int(dx)/(sqrt(16-9x^(2)))=Asin^(-1)(Bx)+C , then A+B=

    A
    `(9)/(4)`
    B
    `(19)/(4)`
    C
    `(3)/(4)`
    D
    `(13)/(12)`
  • int (dx)/((16-4x^(2)))=?

    A
    `(1)/(8)log |(2-x)/(2+x)|+C`
    B
    `(1)/(16)log |(2-x)/(2+x)|+C`
    C
    `(1)/(8)log |(2+x)/(2-x)|+C`
    D
    `(1)/(6)log |(2+x)/(2-x)|+C`
  • Similar Questions

    Explore conceptually related problems

    int(dx)/(sqrt(1-x-x^(2)))

    int(1)/(sqrt(1-16x^(2)))

    Find the following integrals: ( i ) int(dx)/(x^(2)-16)int(dx)/(sqrt(2x-x^(2)))

    Compute the integrals : (a) int_(0)^(pi//2) sin 2x dx , (b) int_(pi//6)^(pi//2) (cos x)/(sin^(3) x) dx (c) int_(0)^(1) (dx)/( sqrt(16 - x^(2)))

    int (dx)/(sqrt(9x^(2)+16))