Home
Class 11
MATHS
Find the value of (i) cos 840 "...

Find the value of `(i) cos 840 "(ii) sin 870

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \cos 840^\circ \) and \( \sin 870^\circ \). ### Step 1: Finding \( \cos 840^\circ \) 1. **Reduce the angle**: We can reduce \( 840^\circ \) by subtracting multiples of \( 360^\circ \) (since cosine is periodic with a period of \( 360^\circ \)). \[ 840^\circ - 720^\circ = 120^\circ \] Therefore, \( \cos 840^\circ = \cos 120^\circ \). 2. **Evaluate \( \cos 120^\circ \)**: The angle \( 120^\circ \) is in the second quadrant, where cosine is negative. We can express it as: \[ \cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ \] We know that \( \cos 60^\circ = \frac{1}{2} \), thus: \[ \cos 120^\circ = -\frac{1}{2} \] ### Final Value for \( \cos 840^\circ \): \[ \cos 840^\circ = -\frac{1}{2} \] --- ### Step 2: Finding \( \sin 870^\circ \) 1. **Reduce the angle**: We can reduce \( 870^\circ \) by subtracting multiples of \( 360^\circ \). \[ 870^\circ - 720^\circ = 150^\circ \] Therefore, \( \sin 870^\circ = \sin 150^\circ \). 2. **Evaluate \( \sin 150^\circ \)**: The angle \( 150^\circ \) is also in the second quadrant, where sine is positive. We can express it as: \[ \sin 150^\circ = \sin(180^\circ - 30^\circ) = \sin 30^\circ \] We know that \( \sin 30^\circ = \frac{1}{2} \), thus: \[ \sin 150^\circ = \frac{1}{2} \] ### Final Value for \( \sin 870^\circ \): \[ \sin 870^\circ = \frac{1}{2} \] --- ### Summary of Results: - \( \cos 840^\circ = -\frac{1}{2} \) - \( \sin 870^\circ = \frac{1}{2} \) ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15C)|27 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15D)|21 Videos
  • TRIGONOMETRIC , OR CIRCULAR, FUNCTIONS

    RS AGGARWAL|Exercise Exercise (15A)|10 Videos
  • THREE-DIMENSIONAL GEOMETRY

    RS AGGARWAL|Exercise EXERCISE 26 C|13 Videos
  • TRIGONOMETRIC EQUATIONS

    RS AGGARWAL|Exercise EXERCISE|21 Videos

Similar Questions

Explore conceptually related problems

Find the value of (i) cos 480^(@) " " (ii) sin 1230^(@) " "(iii) cot (-135^(@)) (iv) "cosec "(-1410^(@))" "(v) cos (-870^(@)) " "(vi) tan 330^(@)

In Delta ABC, right-angled at A, if cot B = 1, find the value of : (i) cos B cos C + sin C (ii) sin B cos C - cos B sin C.

Find the value of (i) cos(-30^(@)) " " (ii) sin 120^(@) " " (iii) sin135^(@) " " (iv) cos 120^(@)" " (v) sin270^(@) " " (vi) cos270^(@)

Find the value of (i) cos 15 pi (ii) sin 16 pi (iii) cos (-pi) (iv) sin 5 pi (v) tan ((5pi)/(4)) (vi) sec 6 pi

Find the values of (i) " sin "405^(@) " " (ii) " sec " (-1470^(@)) " "(iii) " tan " (-300^(@)) (iv) " cot " (585^(@)) " "(v) " cosec " (-750^(@)) " "(vi) " cos " (-2220^(@))

Find the value of (cos pi+i sin pi)

In a ABC right angled at B,/_A=/_C. Find the values of sin A cos C+cos A sin C( ii) sin A sin B+cos A cos B

Find the value of: (i) cos 210^(@) (ii) "sin" 225^(@) (iii) "tan" 330^(@) (iv) cot(-315^(@)) (v) "sec"(11pi)/(4)

Find the values of : (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the value of (i) sin 18^(@) " " (ii) cos 18^(@) (iii) cos 36^(@)" " (iv) sin36^(@) (v) sin 72^(@)" " (vi) cos 72^(@) (vii) sin54^(@)" " (viii) cos54^(@)