Home
Class 12
MATHS
If A = [{:(1, 2),(-4 , - 1):}] , then A...

If A = `[{:(1, 2),(-4 , - 1):}]` , then `A^(-1)` is

A

`(1)/(7) [{:(-1, 2),(4, 1):}]`

B

`(1)/(7) [{:(1, 2),(4-, -1):}]`

C

`(1)/(7) [{:(-1,-2),(4, 1):}]`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the matrix \( A = \begin{pmatrix} 1 & 2 \\ -4 & -1 \end{pmatrix} \), we will follow these steps: ### Step 1: Calculate the Determinant of Matrix A The determinant of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by the formula: \[ \text{det}(A) = ad - bc \] For our matrix \( A \): - \( a = 1 \) - \( b = 2 \) - \( c = -4 \) - \( d = -1 \) Now, substituting these values into the determinant formula: \[ \text{det}(A) = (1)(-1) - (2)(-4) = -1 + 8 = 7 \] ### Step 2: Find the Adjoint of Matrix A The adjoint of a 2x2 matrix \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is given by: \[ \text{adj}(A) = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] For our matrix \( A \): - \( d = -1 \) - \( -b = -2 \) - \( -c = 4 \) - \( a = 1 \) Thus, the adjoint of \( A \) is: \[ \text{adj}(A) = \begin{pmatrix} -1 & -2 \\ 4 & 1 \end{pmatrix} \] ### Step 3: Calculate the Inverse of Matrix A The inverse of a matrix \( A \) is given by the formula: \[ A^{-1} = \frac{\text{adj}(A)}{\text{det}(A)} \] Substituting the values we found: \[ A^{-1} = \frac{1}{7} \begin{pmatrix} -1 & -2 \\ 4 & 1 \end{pmatrix} \] This results in: \[ A^{-1} = \begin{pmatrix} -\frac{1}{7} & -\frac{2}{7} \\ \frac{4}{7} & \frac{1}{7} \end{pmatrix} \] ### Final Answer Thus, the inverse of matrix \( A \) is: \[ A^{-1} = \begin{pmatrix} -\frac{1}{7} & -\frac{2}{7} \\ \frac{4}{7} & \frac{1}{7} \end{pmatrix} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2),(4,1)] , then A^-1= (A) [(-1,-2),(4,1)] (B) 1/7 [(1,2),(-4,-1)] (C) 1/7[(-1,-2),(4,1)] (D) 1/9[(1,2),(4,1)]

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

Knowledge Check

  • Let X=[(x),(y),(z)] D=[(3),(5),(11 )] and A=[(1,-1,-2),(4,1,1),(4,-1,-2)] , if X=A^(-1)D , then X is equal to

    A
    `[(1),(0),(2)]`
    B
    `[((8)/(3)),((-1)/(3)),(0)]`
    C
    `[((-8)/(3)),(1),(0)]`
    D
    `[((8)/(3)),((1)/(3)),(-1)]`
  • If A=[(1,3),(2,4)] and (AB)^(-1)=[((-1)/(2),(1)/(2)),((1)/(4),0)] , then B^(-1). A^(-1)=

    A
    `[((-5)/(8),(1)/(8)),((3)/(8),(1)/(8))]`
    B
    `[(-1,1),(3,5)]`
    C
    `[((-1)/(2),(1)/(4)),((1)/(2),0)]`
    D
    `[((-1)/(2),(1)/(2)),((1)/(4),0)]`
  • Which term of the sequence (1)/(2) , (1)/(4) , (1)/(8) , -(1)/(16) …. is - (1)/(256) ?

    A
    9 th
    B
    8 th
    C
    7 th
    D
    5 th
  • Similar Questions

    Explore conceptually related problems

    Find additive inverse of A={:[(1,2,-1),(-4,3,-2),(1,-1,4)]:} .

    Simplify: {(1/2)^(-1)x\ (-4)^(-1)}^(-1)

    If 1 + (1)/( 3 ^(2)) + (1. 4)/( 1. 2) . (1)/( 3 ^(4)) + (1.4.7)/( 1.2.3) . (1)/( 3 ^(6)) + ... then = (a) ^((1)/(3)), find the value of a.

    Find equation of the plane through (2, 1, 4), (1, -1, 2) and (4, -1, 1).

    Simplify [3 (1)/(4) + {1 (1)/(4) - (1)/(2) (2 (1)/(2) - bar((1)/(4) - (1)/(6)))}] + ((1)/(2)"of 4" (1)/(3))