Home
Class 12
MATHS
lim(xrarroo)([x]+[2x]+[3x]+….+[nx])/(n^(...

`lim_(xrarroo)([x]+[2x]+[3x]+….+[nx])/(n^(2))`, where `[*]` denotes greatest integer function, is

A

`(x)/(3)`

B

`(x)/(6)`

C

`(x)/(2)`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to \infty} \frac{[x] + [2x] + [3x] + \ldots + [nx]}{n^2} \] where \([*]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). For large \(x\), we can express \([kx]\) as: \[ [kx] = kx - \{kx\} \] where \(\{kx\}\) is the fractional part of \(kx\). ### Step 2: Rewrite the Sum We can rewrite the sum in the limit: \[ [x] + [2x] + [3x] + \ldots + [nx] = (x + 2x + 3x + \ldots + nx) - (\{x\} + \{2x\} + \{3x\} + \ldots + \{nx\}) \] The first part simplifies to: \[ x(1 + 2 + 3 + \ldots + n) = x \cdot \frac{n(n + 1)}{2} \] ### Step 3: Analyze the Fractional Part The second part, \(\{x\} + \{2x\} + \{3x\} + \ldots + \{nx\}\), is bounded. Specifically, since each \(\{kx\}\) is between 0 and 1, the sum \(\{x\} + \{2x\} + \ldots + \{nx\}\) is at most \(n\): \[ 0 \leq \{x\} + \{2x\} + \ldots + \{nx\} < n \] ### Step 4: Combine the Results Thus, we can express the limit as: \[ \lim_{x \to \infty} \frac{\left( x \cdot \frac{n(n + 1)}{2} \right) - (\{x\} + \{2x\} + \ldots + \{nx\})}{n^2} \] This simplifies to: \[ \lim_{x \to \infty} \left( \frac{xn(n + 1)}{2n^2} - \frac{\{x\} + \{2x\} + \ldots + \{nx\}}{n^2} \right) \] ### Step 5: Evaluate the Limit As \(x\) approaches infinity, the term \(\frac{xn(n + 1)}{2n^2}\) dominates: \[ \frac{xn(n + 1)}{2n^2} = \frac{x(n + 1)}{2n} \] The second term, \(\frac{\{x\} + \{2x\} + \ldots + \{nx\}}{n^2}\), approaches 0 since it is bounded by \(\frac{n}{n^2} = \frac{1}{n}\), which goes to 0 as \(n\) increases. Thus, we have: \[ \lim_{x \to \infty} \frac{xn(n + 1)}{2n^2} = \frac{(n + 1)x}{2n} \] ### Conclusion As \(x\) goes to infinity, the limit approaches: \[ \frac{(n + 1)}{2} \] Therefore, the final answer is: \[ \lim_{x \to \infty} \frac{[x] + [2x] + [3x] + \ldots + [nx]}{n^2} = \frac{n + 1}{2} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=lim_(n rarr oo)sin^(2n)(pi x)+[x+(1)/(2)], where [.] denotes the greatest integer function,is

Knowledge Check

  • lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

    A
    -1
    B
    4
    C
    5
    D
    None of these
  • lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

    A
    1
    B
    -1
    C
    0
    D
    none of these
  • lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

    A
    0
    B
    1
    C
    -1
    D
    non -existant
  • Similar Questions

    Explore conceptually related problems

    lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

    lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

    Evaluate lim{n-> oo) ([1.2x]+[2.3x]+.....+[n.(n+1)x])/(n^3)), where [.] denotes greatest integer function.

    lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

    lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function