Home
Class 12
MATHS
lim(xtopi//2)(a^(cotx)-a^cosx)/(cotx-cos...

`lim_(xtopi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0` is equal to

A

`log_(e)(pi)/(2)`

B

`log_(e)2`

C

`log_(e)a`

D

a

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)|24 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrar2pi)(cos x-(cosx)^(cosx))/(1-cos x+ln(cosx)) is equal to

>0,"l e t"& ell=lim_(x->pi/2)(a^(cotx)-a^(cosx))/(cotx-cosx)"and"m=lim_(x->-oo)(sqrt(x^2+a x)-sqrt(x^2-a x)) cot xcOS x16R cotx-cos y and m= LimxFor a > 0, let = Limax then-+ax-(A)is always greater than 'm' for all values of a >0(B) 'is always greater than 'm' only when a 21(C) 'e is always greater than 'm' for all values of 'a' satisfying a > e(D) e'+ m 0awepowivnaar noe s1021lauspo

Knowledge Check

  • lim_(xrarrpi//2)(a^(cotx)-a^cosx)/(cotx-cosx)a gt 0 is equal to

    A
    `log_(2)((pi)/(2))`
    B
    `log_e 2`
    C
    `log_e a`
    D
    `a`
  • For agt0, let l=lim_(xto(pi)/2)(a^(cotx)-a^(cosx))/(cotx-cosc) and m=lim_(xto-oo)(sqrt(x^(2)+ax))-(sqrt(x^(2)-ax)) then

    A
    `l gtm` for all `a gt0`
    B
    `l gtm` only when `age1`
    C
    `lgtm` for all `agte^(-a)`
    D
    `e^(l)+m=0`
  • lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

    A
    2
    B
    `3/2`
    C
    `-3/2`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    lim_(x rarr0)(x+1)^(cotx)

    lim_(xto pi/2)(pi-2x)^(cosx) is equal to

    The expression (cotx+cosecx-1)/(cotx-cosecx+1) is equal to:

    int_0^(pi//2)sqrt(cotx)/(sqrt(cotx)+sqrt(tanx)) dx is equal to :

    If int_(0)^(pi//2)(cotx)/(cotx+"cosec "x)dx=m(pi+n) , them m * n is equal to