Home
Class 12
MATHS
Show that the lines (x-a+d)/(alpha-de...

Show that the lines `(x-a+d)/(alpha-delta)=(y-a)/alpha=(z-a-d)/(alpha+delta)` and `(x-b+c)/(beta-gamma)=(y-b)/beta=(z-b-c)/(beta+gamma)` are coplanar.

Text Solution

Verified by Experts

`The correct option is B x -2y + z =0`
`The lines will be coplanar
∣ ∣ ∣ ∣ `a − ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise Exercise 11.1|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • RELATIONS AND FUNCTIONS

    NCERT ENGLISH|Exercise EXERCISE 1.3|14 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.5|7 Videos

Similar Questions

Explore conceptually related problems

Prove that the straight lines x/alpha=y/beta=z/gamma,x/l=y/m=z/n and x/(a alpha)=y/(b beta)=z/(c gamma) will be co planar if l/alpha(b-c)+m/beta(c-a)+n/gamma(a-b)=0

Prove that |((beta+gamma-alpha-delta)^4,(beta+gamma-alpha-delta)^2,1),((gamma+alpha-beta-delta)^4,(gamma+alpha-beta-delta)^2,1),((alpha+beta-gamma-delta)^4,(alpha+beta-gamma-delta)^2,1)|=-64(alpha-beta)(alpha-gamma)(alpha-delta)(beta-delta)(gamma-delta)

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

the points (alpha,beta) , (gamma , delta) ,(alpha , delta) , (gamma , beta) are different real numbers are:

If alpha + beta + gamma = pi , show that : tan (beta+gamma-alpha) + tan (gamma+alpha-beta) + tan (alpha+beta-gamma) = tan (beta+gamma-alpha) tan (gamma+alpha-beta) tan (alpha+beta-gamma)

If alpha, beta, gamma are the roots of the cubic x^(3)-px^(2)+qx-r=0 Find the equations whose roots are (i) beta gamma +1/(alpha), gamma alpha+1/(beta), alpha beta+1/(gamma) (ii) (beta+gamma-alpha),(gamma+alpha-beta),(alpha+beta-gamma) Also find the valueof (beta+gamma-alpha)(gamma+alpha-beta)(alpha+beta-gamma)

The equations of the line through the point (alpha, beta, gamma) and equally inclined to the axes are (A) x-alpha=y-beta=z-gamma (B) (x-1)/alpha=(y-1)/beta=(z-1)/gamma (C) x/alpha=y/beta=z/gamma (D) none of these

If alpha, beta and gamma are the roots of the equation x^(3)+x+2=0 , then the equation whose roots are (alpha- beta)(alpha-gamma), (beta-gamma)(beta-gamma) and (gamma-alpha)(gamma-alpha) is

The solutin set of the inequlity (1)/(x-2)-1/xle(2)/(x+2)is (-alpha,beta]uu(gamma,alpha)uu[delta,oo),then (A) a+beta+gamma+delta=5 (B) alphabetagammadelta=-4 (C) betadelta=-2 (D) alphabetagamma=0

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled