Home
Class 12
MATHS
Evaluate lim(xto-2^(+)) (x^(2)-1)/(2x+4)...

Evaluate `lim_(xto-2^(+)) (x^(2)-1)/(2x+4).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to -2^+} \frac{x^2 - 1}{2x + 4} \), we will follow these steps: ### Step 1: Substitute \( x \) with \( -2 + h \) We will rewrite the limit as \( h \) approaches 0, where \( h \) is a small positive number. Thus, we have: \[ x = -2 + h \] As \( x \to -2^+ \), \( h \to 0^+ \). ### Step 2: Rewrite the limit Substituting \( x \) in the limit expression: \[ \lim_{h \to 0^+} \frac{(-2 + h)^2 - 1}{2(-2 + h) + 4} \] ### Step 3: Simplify the numerator Calculating the numerator: \[ (-2 + h)^2 - 1 = (4 - 4h + h^2) - 1 = h^2 - 4h + 3 \] ### Step 4: Simplify the denominator Calculating the denominator: \[ 2(-2 + h) + 4 = -4 + 2h + 4 = 2h \] ### Step 5: Substitute back into the limit Now substituting the simplified numerator and denominator back into the limit: \[ \lim_{h \to 0^+} \frac{h^2 - 4h + 3}{2h} \] ### Step 6: Factor the numerator We can factor the numerator: \[ h^2 - 4h + 3 = (h - 1)(h - 3) \] Thus, the limit becomes: \[ \lim_{h \to 0^+} \frac{(h - 1)(h - 3)}{2h} \] ### Step 7: Evaluate the limit As \( h \to 0^+ \): - The numerator approaches \( (0 - 1)(0 - 3) = 3 \) - The denominator approaches \( 2(0) = 0 \) This implies: \[ \lim_{h \to 0^+} \frac{3}{0} = \infty \] ### Conclusion Thus, the limit is: \[ \lim_{x \to -2^+} \frac{x^2 - 1}{2x + 4} = \infty \] ---

To evaluate the limit \( \lim_{x \to -2^+} \frac{x^2 - 1}{2x + 4} \), we will follow these steps: ### Step 1: Substitute \( x \) with \( -2 + h \) We will rewrite the limit as \( h \) approaches 0, where \( h \) is a small positive number. Thus, we have: \[ x = -2 + h \] As \( x \to -2^+ \), \( h \to 0^+ \). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(xto2) (x^(2)-x-2)/(x^(2)-2x-sin(x-2)).

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate lim_(xto2) (x^(10)-1024)/(x^(5)-32).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).