Home
Class 12
MATHS
I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=in...

`I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx`. Then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=4I_(2)`

D

`I_(2)=4I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. ### Step 1: Define the integrals Let: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx \] ### Step 2: Transform \( I_2 \) To analyze \( I_2 \), we can use the property of definite integrals. We replace \( x \) with \( -x \): \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin(-x) + \cos(-x)) \, dx \] Using the properties of sine and cosine: \[ \sin(-x) = -\sin x \quad \text{and} \quad \cos(-x) = \cos x \] Thus, we have: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(-\sin x + \cos x) \, dx \] This can be rewritten as: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx \] ### Step 3: Add the two forms of \( I_2 \) Now we can add the two expressions for \( I_2 \): \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx \] Using the property of logarithms: \[ \ln(a) + \ln(b) = \ln(ab) \] This gives us: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln((\sin x + \cos x)(\cos x - \sin x)) \, dx \] Now, simplifying the product: \[ (\sin x + \cos x)(\cos x - \sin x) = \cos^2 x - \sin^2 x = \cos(2x) \] Thus: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] ### Step 4: Use symmetry of the integral Since the function \( \ln(\cos(2x)) \) is even, we can write: \[ 2I_2 = 2 \int_0^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] So we have: \[ I_2 = \int_0^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] ### Step 5: Change of variables Now, let \( t = 2x \), then \( dt = 2dx \) or \( dx = \frac{dt}{2} \). Changing the limits accordingly: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \frac{\pi}{2} \) Thus: \[ I_2 = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \frac{dt}{2} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] ### Step 6: Relate \( I_1 \) and \( I_2 \) We know from the properties of integrals that: \[ \int_0^{\frac{\pi}{2}} \ln(\sin(t)) \, dt = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] Thus: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) \, dt = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] This gives us: \[ I_1 = -\frac{\pi}{2} \ln(2) \] And since: \[ I_2 = \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt = \frac{1}{2} \cdot I_1 \] Thus: \[ I_1 = 2I_2 \] ### Conclusion The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = 2I_2 \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. ### Step 1: Define the integrals Let: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then (a) I_1=2I_2 (b) I_2=2I_1 I_1=4I_2 (d) I_2=4I_1

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi)(x)/(1+sinx)dx .

int_0^(pi/2) (dx)/(4+sinx)

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :