Home
Class 12
MATHS
I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=in...

`I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx`. Then

A

`I_(1)=2I_(2)`

B

`I_(2)=2I_(1)`

C

`I_(1)=4I_(2)`

D

`I_(2)=4I_(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. ### Step 1: Define the integrals Let: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx \] ### Step 2: Transform \( I_2 \) To analyze \( I_2 \), we can use the property of definite integrals. We replace \( x \) with \( -x \): \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin(-x) + \cos(-x)) \, dx \] Using the properties of sine and cosine: \[ \sin(-x) = -\sin x \quad \text{and} \quad \cos(-x) = \cos x \] Thus, we have: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(-\sin x + \cos x) \, dx \] This can be rewritten as: \[ I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx \] ### Step 3: Add the two forms of \( I_2 \) Now we can add the two expressions for \( I_2 \): \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\sin x + \cos x) \, dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos x - \sin x) \, dx \] Using the property of logarithms: \[ \ln(a) + \ln(b) = \ln(ab) \] This gives us: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln((\sin x + \cos x)(\cos x - \sin x)) \, dx \] Now, simplifying the product: \[ (\sin x + \cos x)(\cos x - \sin x) = \cos^2 x - \sin^2 x = \cos(2x) \] Thus: \[ 2I_2 = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] ### Step 4: Use symmetry of the integral Since the function \( \ln(\cos(2x)) \) is even, we can write: \[ 2I_2 = 2 \int_0^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] So we have: \[ I_2 = \int_0^{\frac{\pi}{4}} \ln(\cos(2x)) \, dx \] ### Step 5: Change of variables Now, let \( t = 2x \), then \( dt = 2dx \) or \( dx = \frac{dt}{2} \). Changing the limits accordingly: - When \( x = 0 \), \( t = 0 \) - When \( x = \frac{\pi}{4} \), \( t = \frac{\pi}{2} \) Thus: \[ I_2 = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \frac{dt}{2} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] ### Step 6: Relate \( I_1 \) and \( I_2 \) We know from the properties of integrals that: \[ \int_0^{\frac{\pi}{2}} \ln(\sin(t)) \, dt = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] Thus: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin(t)) \, dt = \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt \] This gives us: \[ I_1 = -\frac{\pi}{2} \ln(2) \] And since: \[ I_2 = \frac{1}{2} \int_0^{\frac{\pi}{2}} \ln(\cos(t)) \, dt = \frac{1}{2} \cdot I_1 \] Thus: \[ I_1 = 2I_2 \] ### Conclusion The relationship between \( I_1 \) and \( I_2 \) is: \[ I_1 = 2I_2 \]

To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and establish a relationship between them. ### Step 1: Define the integrals Let: \[ I_1 = \int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise MCQ_TYPE|27 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise LC_TYPE|31 Videos
  • DEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CAE_TYPE|88 Videos
  • CURVE TRACING

    CENGAGE ENGLISH|Exercise EXERCISES|24 Videos
  • DETERMINANT

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|5 Videos

Similar Questions

Explore conceptually related problems

I_1=int_0^(pi/2)ln(sinx)dx ,I_2=int_(-pi/4)^(pi/4)ln(sinx+cosx)dxdot Then (a) I_1=2I_2 (b) I_2=2I_1 I_1=4I_2 (d) I_2=4I_1

int_0^(pi/2) cosx/(1+sinx)dx

int_(0)^(pi)(x)/(1+sinx)dx .

int_0^(pi/2) (dx)/(4+sinx)

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

int_(0)^(pi) x log sinx\ dx

int_(0)^(pi) x log sinx dx

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

CENGAGE ENGLISH-DEFINITE INTEGRATION -SCQ_TYPE
  1. The value of the definite integral int(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)...

    Text Solution

    |

  2. The value of the integral int(-3pi//4)^(5pi//4)((sinx+cosx))/(e^(x-pi/...

    Text Solution

    |

  3. I(1)=int(0)^((pi)/2)Ln (sinx)dx, I(2)=int(-pi//4)^(pi//4)Ln(sinx+cosx)...

    Text Solution

    |

  4. IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I2=int0^(pi/2)(sin^2x)/(1+sin^2...

    Text Solution

    |

  5. Evaluate : int0^(pi/2)(xsinxcosx)/(sin^4x+cos^4x)\ dx

    Text Solution

    |

  6. For x epsilonR, and a continuous function f let I(1)=int(sin^(2)t)^(1+...

    Text Solution

    |

  7. Ifint(-pi)^((3pi)/4)(e^(pi/4)dx)/((e^x+e^(pi/4))(sinx+cosx)=kint(-pi/2...

    Text Solution

    |

  8. The value of the definite integral int2^4x(3-x)(4+x)(6-x)(10-x)+sinx)d...

    Text Solution

    |

  9. IfI=int(-20pi)^(20pi)|sinx|[sinx]dx(w h e r e[dot] denotes the greate...

    Text Solution

    |

  10. The function f and g are positive and continuous. If f is increasing a...

    Text Solution

    |

  11. Evaluate : int0^pi(xtanx)/(secx+tanx)dx

    Text Solution

    |

  12. If f(x)=int(0)^(pi)(t sin t dt)/(sqrt(1+tan^(2)xsin^(2)t)) for 0lt xlt...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. The value of int(0)^(4pi)log(e)|3sinx+3sqrt(3) cos x|dx then the value...

    Text Solution

    |

  15. The value of int(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

    Text Solution

    |

  16. The value f the integral int(-pi)^pisinm xsinn xdx , for m!=n(m , n in...

    Text Solution

    |

  17. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  18. The value of int(0)^(1)(tan^(-1)((x)/(x+1)))/(tan^(-1)((1+2x-2x^(2))/(...

    Text Solution

    |

  19. int(-pi/2)^(pi/2)(e^(|sinx|)cosx)/((1+e^(tanx))dx is equal to e+1 ...

    Text Solution

    |

  20. Evaluate the following definite integral: int(-pi)^(pi)(2x(1+sinx))/(1...

    Text Solution

    |