Home
Class 12
MATHS
Solve for x and y , x[{:(2),(1):}]+y[{:(...

Solve for x and y , `x[{:(2),(1):}]+y[{:(3),(5):}]+[{:(-8),(-11):}]=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve for \( x \) and \( y \) in the equation \[ x \begin{pmatrix} 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \begin{pmatrix} -8 \\ -11 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \] we will follow these steps: ### Step 1: Write the equation in matrix form We can express the equation as: \[ \begin{pmatrix} 2x + 3y - 8 \\ x + 5y - 11 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \]

To solve for \( x \) and \( y \) in the equation \[ x \begin{pmatrix} 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} 3 \\ 5 \end{pmatrix} + \begin{pmatrix} -8 \\ -11 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \] we will follow these steps: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Solve for x and y (i) [{:(,2,5),(,5,2):}] [{:(,x),(,y):}]=[{:(,-7),(,14):}] (ii) [x+y, x-4] [{:(,-1,-2),(,2,2):}]=[-7, -11] (iii) [{:(,-2,0),(,3,1):}] [{:(,-1),(,2x):}] +3[{:(,-2),(,1):}]=2 [{:(,y),(,3):}] .

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

solve for x and y, x+ (6/y)=6,3x-(8/y)=5

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y : (2)/(x) + (3)/(y ) = 13, (5)/(x) - ( 4)/( y) = - 2 ( x ne 0 and y ne 0 )

Solve for x and y 2 x - y = 1 3 x + 2 y = 0

solve for x and y [[3,-4], [1,2]][[x],[y]]=[[3],[11]]

Solve for x and y , if : (sqrt( 27) )^(x) ÷ 3^(y+ 4) = 1 and 8^(4-(x)/(3)) - 16^y = 0 .