Home
Class 12
MATHS
Construct a 3 xx 4matrix, whose element...

Construct a `3 xx 4`matrix, whose elements are given by: `a_(i j)=1/2|-3i+j|` `

Text Solution

AI Generated Solution

The correct Answer is:
To construct a \(3 \times 4\) matrix whose elements are given by \(a_{ij} = \frac{1}{2} | -3i + j | \), we will calculate each element of the matrix step by step. ### Step-by-Step Solution: 1. **Define the Matrix Structure**: The matrix \(A\) will have elements \(a_{ij}\) where \(i\) represents the row number and \(j\) represents the column number. The matrix will look like this: \[ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \] 2. **Calculate Each Element**: - **For \(a_{11}\)**: \[ a_{11} = \frac{1}{2} | -3(1) + 1 | = \frac{1}{2} | -3 + 1 | = \frac{1}{2} | -2 | = \frac{1}{2} \times 2 = 1 \] - **For \(a_{12}\)**: \[ a_{12} = \frac{1}{2} | -3(1) + 2 | = \frac{1}{2} | -3 + 2 | = \frac{1}{2} | -1 | = \frac{1}{2} \times 1 = \frac{1}{2} \] - **For \(a_{13}\)**: \[ a_{13} = \frac{1}{2} | -3(1) + 3 | = \frac{1}{2} | -3 + 3 | = \frac{1}{2} | 0 | = 0 \] - **For \(a_{14}\)**: \[ a_{14} = \frac{1}{2} | -3(1) + 4 | = \frac{1}{2} | -3 + 4 | = \frac{1}{2} | 1 | = \frac{1}{2} \times 1 = \frac{1}{2} \] - **For \(a_{21}\)**: \[ a_{21} = \frac{1}{2} | -3(2) + 1 | = \frac{1}{2} | -6 + 1 | = \frac{1}{2} | -5 | = \frac{1}{2} \times 5 = \frac{5}{2} \] - **For \(a_{22}\)**: \[ a_{22} = \frac{1}{2} | -3(2) + 2 | = \frac{1}{2} | -6 + 2 | = \frac{1}{2} | -4 | = \frac{1}{2} \times 4 = 2 \] - **For \(a_{23}\)**: \[ a_{23} = \frac{1}{2} | -3(2) + 3 | = \frac{1}{2} | -6 + 3 | = \frac{1}{2} | -3 | = \frac{1}{2} \times 3 = \frac{3}{2} \] - **For \(a_{24}\)**: \[ a_{24} = \frac{1}{2} | -3(2) + 4 | = \frac{1}{2} | -6 + 4 | = \frac{1}{2} | -2 | = \frac{1}{2} \times 2 = 1 \] - **For \(a_{31}\)**: \[ a_{31} = \frac{1}{2} | -3(3) + 1 | = \frac{1}{2} | -9 + 1 | = \frac{1}{2} | -8 | = \frac{1}{2} \times 8 = 4 \] - **For \(a_{32}\)**: \[ a_{32} = \frac{1}{2} | -3(3) + 2 | = \frac{1}{2} | -9 + 2 | = \frac{1}{2} | -7 | = \frac{1}{2} \times 7 = \frac{7}{2} \] - **For \(a_{33}\)**: \[ a_{33} = \frac{1}{2} | -3(3) + 3 | = \frac{1}{2} | -9 + 3 | = \frac{1}{2} | -6 | = \frac{1}{2} \times 6 = 3 \] - **For \(a_{34}\)**: \[ a_{34} = \frac{1}{2} | -3(3) + 4 | = \frac{1}{2} | -9 + 4 | = \frac{1}{2} | -5 | = \frac{1}{2} \times 5 = \frac{5}{2} \] 3. **Construct the Matrix**: Now that we have all the elements, we can construct the matrix \(A\): \[ A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix} \] ### Final Matrix: \[ A = \begin{bmatrix} 1 & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{5}{2} & 2 & \frac{3}{2} & 1 \\ 4 & \frac{7}{2} & 3 & \frac{5}{2} \end{bmatrix} \]

To construct a \(3 \times 4\) matrix whose elements are given by \(a_{ij} = \frac{1}{2} | -3i + j | \), we will calculate each element of the matrix step by step. ### Step-by-Step Solution: 1. **Define the Matrix Structure**: The matrix \(A\) will have elements \(a_{ij}\) where \(i\) represents the row number and \(j\) represents the column number. The matrix will look like this: \[ A = \begin{bmatrix} ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.3|10 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise ILLUSTRATION|66 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Construct a 3 xx 4 matrix, whose elements are given by:(i) a_(i j)=1/2|-3i+j| (ii) a_(i j)=2i-j

Construct a 3 xx 4 matrix, whose elements are given by:(i) a_(i j)=1/2|-3i+j| (ii) a_(i j)=2i-j

Construct a 3 xx 4 matrix, whose elements are given by:(i) a_(i j)=2i-j

Construct a 3 xx2 matrix whose elements are given by a_(i j)=1/2|i-3j| .

Construct a 3 xx2 matrix whose elements are given by a_(i j)=j-i .

Construct a 3xx2 matrix whose elements are given by a_(ij)=2i-j

Construct a 3 xx 2 matrix whose elements ar given by a_(ij)=(1)/(2)(i-3j)

Construct 3xx3 matrix whose elements are given by : a_(ij) =i+j

Construct 3xx3 matrix whose elements are given by : a_(ij)=ixxj

Construct 3xx3 matrix whose elements are given by : a_(ij)=i-j