Home
Class 12
MATHS
Consider the matrices A=[(4,6,-1),(3,0...

Consider the matrices
`A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),(-1,2)], C=[(3),(1),(2)]`
Out of the given matrix products, which one is not defined ?

A

`(AB)^(T)C`

B

`C^(T)C (AB)^(T)`

C

`C^(T)AB`

D

`A^(T)AB B^(T)C`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given matrix products is not defined, we need to analyze the dimensions of the matrices involved in each product. Let's start by identifying the dimensions of the matrices A, B, and C. 1. **Matrix A**: - A = \(\begin{pmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{pmatrix}\) - Dimensions: 3 rows and 3 columns (3x3) 2. **Matrix B**: - B = \(\begin{pmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}\) - Dimensions: 3 rows and 2 columns (3x2) 3. **Matrix C**: - C = \(\begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}\) - Dimensions: 3 rows and 1 column (3x1) Now, let's analyze each option one by one: ### Option A: \( (AB)^T C \) - First, we calculate \( AB \): - A (3x3) and B (3x2) can be multiplied because the number of columns in A (3) matches the number of rows in B (3). - Resulting dimensions of \( AB \) will be (3x2). - Now, we take the transpose: \( (AB)^T \): - The transpose of a (3x2) matrix is (2x3). - Finally, we multiply \( (AB)^T \) (2x3) with C (3x1): - The multiplication is valid because the number of columns in \( (AB)^T \) (3) matches the number of rows in C (3). - Resulting dimensions will be (2x1). **Conclusion**: Option A is defined. ### Option B: \( C^T C AB \) - First, we calculate \( C^T \): - C (3x1) transposed becomes (1x3). - Now, we multiply \( C^T \) (1x3) with C (3x1): - The multiplication is valid because the number of columns in \( C^T \) (3) matches the number of rows in C (3). - Resulting dimensions will be (1x1). - Next, we multiply \( (C^T C) \) (1x1) with \( AB \) (3x2): - This multiplication is **not valid** because the number of columns in \( (C^T C) \) (1) does not match the number of rows in \( AB \) (3). **Conclusion**: Option B is not defined. ### Option C: \( C^T AB \) - We already know \( C^T \) is (1x3) and \( AB \) is (3x2). - The multiplication is valid because the number of columns in \( C^T \) (3) matches the number of rows in \( AB \) (3). - Resulting dimensions will be (1x2). **Conclusion**: Option C is defined. ### Option D: \( A^T AB B^T C \) - First, we calculate \( A^T \): - A (3x3) transposed becomes (3x3). - Next, we multiply \( A^T \) (3x3) with \( AB \) (3x2): - This multiplication is valid. - Resulting dimensions will be (3x2). - Now, we calculate \( B^T \): - B (3x2) transposed becomes (2x3). - Next, we multiply \( AB B^T \): - \( AB \) (3x2) and \( B^T \) (2x3) can be multiplied. - Resulting dimensions will be (3x3). - Finally, we multiply \( (A^T AB B^T) \) (3x3) with C (3x1): - This multiplication is valid. - Resulting dimensions will be (3x1). **Conclusion**: Option D is defined. ### Final Conclusion: Out of the given matrix products, the one that is **not defined** is **Option B**: \( C^T C AB \).

To determine which of the given matrix products is not defined, we need to analyze the dimensions of the matrices involved in each product. Let's start by identifying the dimensions of the matrices A, B, and C. 1. **Matrix A**: - A = \(\begin{pmatrix} 4 & 6 & -1 \\ 3 & 0 & 2 \\ 1 & -2 & 5 \end{pmatrix}\) - Dimensions: 3 rows and 3 columns (3x3) 2. **Matrix B**: - B = \(\begin{pmatrix} 2 & 4 \\ 0 & 1 \\ -1 & 2 \end{pmatrix}\) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.4|12 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.5|17 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Consider the matrices A=[(4,6,-1),(3,0,2),(1,-2,5)], B=[(2,4),(0,1),(-1,2)], C=[(3),(1),(2)] Which of the following are defined? (a) (A B)^t C (b) C^T C(A B)^T (c) C^T A B (d) A^T A B B^T C

If A=[(-1,0,2),(3,1,4)], B=[(0,-2,5),(1,-3,1)] and C=[(1,-5,2),(6,0,-4)], then find (2A-3B+4C).

Knowledge Check

  • Consider the following matrices. A= [(3,-2),(-1,4)], B= [(2,1),(-3,4)], C= [(1,1),(2,1)], D= [(2,1),(1,2)] CD=

    A
    `[(5,4),(4,5)]`
    B
    `[(4,5),(5,4)]`
    C
    `[(1,3),(3,1)]`
    D
    `[(3,1),(1,3)]`
  • Consider the following matrices. A= [(3,-2),(-1,4)], B= [(2,1),(-3,4)], C= [(1,1),(2,1)], D= [(2,1),(1,2)] 2A+B- C =

    A
    `[(7,-5),(-7,11)]`
    B
    `[(8,-7),(11,-4)]`
    C
    `[(-4,3),(7,-8)]`
    D
    `[(7,-11),(-4,6)]`
  • Consider the following matrices. A= [(3,-2),(-1,4)], B= [(2,1),(-3,4)], C= [(1,1),(2,1)], D= [(2,1),(1,2)] If BX= [(7),(6)] , then the order of matrix X will be:

    A
    `2 xx 2`
    B
    `1 xx 2`
    C
    `2 xx 1`
    D
    `1 xx 1`
  • Similar Questions

    Explore conceptually related problems

    A={:[(1,2),(3,4),(5,6)]:},B={:[(0,1),(-1,2),(-2,1)]:} , then find matrix X such that 2A +3X=5B.

    Let A=[{:(,2,1),(,0,-2):}], B=[{:(,4,1),(,-3,-2):}] and C=[{:(,-3,2),(,-1,4):}] . Find A^2+AC-5B .

    if A=[{:(1,6),(2,4),(-3,5):}]B=[{:(3,4),(1,-2),(2,-1):}], then find a matrix C such that 2A-B+c=0

    Find the rank of the matrix A = [[0,1,2,-2],[4,0,2,6],[2,1,3,1]]

    If A=[(-3,1,6),(2,-5,0),(1,-3,4)],B=[(4,7),(-4,2),(-1,-5)] and AX=B, then the size of X is