Home
Class 12
MATHS
lim(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^...

`lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4`

A

exists and equals `1/(4sqrt2)`

B

does not exist

C

exists and equals `1/(2sqrt2)`

D

exists and equals `1/(2sqrt2(sqrt2+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4}, \] we will follow these steps: ### Step 1: Multiply by the Conjugate To simplify the expression, we multiply the numerator and denominator by the conjugate of the numerator: \[ \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} \cdot \frac{\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2}}{\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2}}. \] This gives us: \[ \frac{(1 + \sqrt{1 + y^4}) - 2}{y^4(\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2})}. \] ### Step 2: Simplify the Numerator The numerator simplifies to: \[ 1 + \sqrt{1 + y^4} - 2 = \sqrt{1 + y^4} - 1. \] So we rewrite the limit as: \[ \lim_{y \to 0} \frac{\sqrt{1 + y^4} - 1}{y^4(\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2})}. \] ### Step 3: Use the Binomial Expansion For small values of \(y\), we can use the binomial expansion for \(\sqrt{1 + y^4}\): \[ \sqrt{1 + y^4} \approx 1 + \frac{y^4}{2}. \] Thus, \[ \sqrt{1 + y^4} - 1 \approx \frac{y^4}{2}. \] ### Step 4: Substitute Back into the Limit Substituting this back into our limit gives: \[ \lim_{y \to 0} \frac{\frac{y^4}{2}}{y^4(\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2})}. \] ### Step 5: Cancel \(y^4\) The \(y^4\) terms cancel out: \[ \lim_{y \to 0} \frac{1/2}{\sqrt{1 + \sqrt{1 + y^4}} + \sqrt{2}}. \] ### Step 6: Evaluate the Limit As \(y \to 0\), \(\sqrt{1 + \sqrt{1 + y^4}} \to \sqrt{1 + \sqrt{1}} = \sqrt{2}\). Therefore, the limit simplifies to: \[ \frac{1/2}{\sqrt{2} + \sqrt{2}} = \frac{1/2}{2\sqrt{2}} = \frac{1}{4\sqrt{2}}. \] ### Final Answer Thus, the final answer is: \[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \frac{1}{4\sqrt{2}}. \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

lim_(y->o)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

Evaluate the following limits : Lim_(x to 0 ) (sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)

The value of ("lim")_(xvec2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

lim_(x to 0) (sqrt(1 + x + x^(2)) - sqrt(x + 1))/(2X^(2)) is equal to

The value of the limit lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1, is

Evaluate lim_(xtooo) x^(3){sqrt(x^(2)+sqrt(1+x^(4)))-xsqrt(2)}.

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4