Home
Class 12
MATHS
f(x)={:{(5, x le 1) ,(a+bx,1 lt x lt 3),...

`f(x)={:{(5, x le 1) ,(a+bx,1 lt x lt 3),(b+5x,3 le x lt 5),(30,xge5):}` then (a) `f(x)` is discontiuous `AA` a `in R, b in R` (b) `f(x)` is discontiuous if `a=0` &`b=5` (c) `f(x)` is discontiuous if `a=5` &`b=0` (d) `f(x)` is discontiuous if `a=-5` &`b=10`

A

continuous if a =5 and b = 5

B

continuous if a =-5 and b = 10

C

continuous if a = 0 and b = 5

D

not continuous for any values of a and b

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the piecewise function \( f(x) \), we need to check the continuity at the points where the definition of the function changes, specifically at \( x = 1 \), \( x = 3 \), and \( x = 5 \). The function is defined as follows: \[ f(x) = \begin{cases} 5 & \text{if } x \leq 1 \\ a + bx & \text{if } 1 < x < 3 \\ b + 5x & \text{if } 3 \leq x < 5 \\ 30 & \text{if } x \geq 5 \end{cases} \] ### Step 1: Check continuity at \( x = 1 \) To check continuity at \( x = 1 \), we need to ensure that: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1) \] From the definition of \( f(x) \): - \( f(1) = 5 \) - \( \lim_{x \to 1^-} f(x) = 5 \) - \( \lim_{x \to 1^+} f(x) = a + b(1) = a + b \) Setting these equal gives us the equation: \[ a + b = 5 \quad \text{(Equation 1)} \] ### Step 2: Check continuity at \( x = 3 \) Next, we check continuity at \( x = 3 \): \[ \lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3) \] From the definition of \( f(x) \): - \( f(3) = b + 5(3) = b + 15 \) - \( \lim_{x \to 3^-} f(x) = a + b(3) = a + 3b \) Setting these equal gives us the equation: \[ a + 3b = b + 15 \quad \text{(Equation 2)} \] Rearranging Equation 2: \[ a + 2b = 15 \] ### Step 3: Solve the system of equations Now we have the system of equations: 1. \( a + b = 5 \) 2. \( a + 2b = 15 \) Subtract Equation 1 from Equation 2: \[ (a + 2b) - (a + b) = 15 - 5 \] \[ b = 10 \] Substituting \( b = 10 \) back into Equation 1: \[ a + 10 = 5 \implies a = 5 - 10 = -5 \] ### Step 4: Check continuity at \( x = 5 \) Now we check continuity at \( x = 5 \): \[ \lim_{x \to 5^-} f(x) = b + 5(5) = 10 + 25 = 35 \] \[ f(5) = 30 \] Since \( \lim_{x \to 5^-} f(x) \neq f(5) \), the function is discontinuous at \( x = 5 \). ### Conclusion The function \( f(x) \) is discontinuous for \( a = -5 \) and \( b = 10 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 5|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 3|5 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

f(x)={ 5 ; xle1, a+bx; 1lt x lt 3, b+5x; 3le x lt5, 30 xge5 then

If f(x)={{:(,4,-3lt x lt -1),(,5+x,-1le x lt 0),(,5-x,0 le x lt 2),(,x^(2)+x-3,2 lt x lt 3):} then, f(|x|) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={:{(1+sin x", " 0 le x lt pi//2),(" "1 ", " x lt0):} then show that f'(0) does not exist.

If f(x)={{:(x+3 : x lt 3),(3x^(2)+1:xge3):} , then find int_(2)^(5) f(x) dx .

If f(x)={[1 , if xle3],[a x+b , if 3ltxlt5],[ 7, if 5lex]} . Determine the values of a and b so that f(x) is continuous.

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f(x) =[{:(asqrt(x+1),0lt xlt3),(bx +2, 3lexlt5):} if f(x) is differentiable at x=3 then find the values of a and b.