Home
Class 12
MATHS
If x = 3 tant and y = 3 sec t, then the ...

If x = 3 tant and y = 3 sec t, then the value of `(d^2y)/(dx^2)" at" t=pi/4` is

A

`3/(2sqrt2)`

B

`1/(3sqrt2)`

C

`1/6`

D

`1/(6sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of \( y \) with respect to \( x \) given the equations \( x = 3 \tan t \) and \( y = 3 \sec t \). We will evaluate this at \( t = \frac{\pi}{4} \). ### Step-by-Step Solution: 1. **Differentiate \( x \) with respect to \( t \)**: \[ x = 3 \tan t \implies \frac{dx}{dt} = 3 \sec^2 t \] 2. **Differentiate \( y \) with respect to \( t \)**: \[ y = 3 \sec t \implies \frac{dy}{dt} = 3 \sec t \tan t \] 3. **Find \( \frac{dy}{dx} \)** using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{3 \sec t \tan t}{3 \sec^2 t} = \frac{\tan t}{\sec t} = \sin t \] 4. **Differentiate \( \frac{dy}{dx} \) with respect to \( t \)** to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dt} \left( \frac{dy}{dx} \right) \cdot \frac{1}{\frac{dx}{dt}} = \frac{d}{dt}(\sin t) \cdot \frac{1}{\frac{dx}{dt}} \] \[ \frac{d}{dt}(\sin t) = \cos t \] \[ \frac{d^2y}{dx^2} = \cos t \cdot \frac{1}{3 \sec^2 t} = \frac{\cos t}{3 \sec^2 t} = \frac{\cos^3 t}{3} \] 5. **Evaluate \( \frac{d^2y}{dx^2} \) at \( t = \frac{\pi}{4} \)**: \[ \frac{d^2y}{dx^2} \bigg|_{t = \frac{\pi}{4}} = \frac{\cos^3\left(\frac{\pi}{4}\right)}{3} \] \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \implies \cos^3\left(\frac{\pi}{4}\right) = \left(\frac{1}{\sqrt{2}}\right)^3 = \frac{1}{2\sqrt{2}} \] \[ \frac{d^2y}{dx^2} \bigg|_{t = \frac{\pi}{4}} = \frac{1}{3} \cdot \frac{1}{2\sqrt{2}} = \frac{1}{6\sqrt{2}} \] ### Final Answer: \[ \frac{d^2y}{dx^2} \bigg|_{t = \frac{\pi}{4}} = \frac{1}{6\sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 4|6 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 5|3 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If x=f(t) and y=g(t) , then write the value of (d^2y)/(dx^2) .

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4

If x = 2t^3 and y = 3t^2 , then value of (dy)/(dx) is

If x=3tant and y=3sect then find (d^2y)/(dx^2) at x=(pi)/(4) (a) 3 (b) (1)/(6sqrt2) (c) 1 (d) (1)/(6)

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If x=asin2t(1+cos2t) and y=bcos2t(1-cos2t), find the values of (dy)/(dx) at t=pi/4 and t=pi/3dot

If x=cost(3-2\ cos^2t) and y=sint(3-2sin^2t) find the value of (dy)/(dx) at t=pi/4

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to