Home
Class 12
MATHS
If A(3/sqrt(2), sqrt(2)), B(-3/sqrt(2),...

If ` A(3/sqrt(2), sqrt(2))`, `B(-3/sqrt(2), sqrt(2)), C(-3/sqrt(2), -sqrt(2))` and `D(3 cos theta , 2 sin theta)` are four points . If the area of the quadrilateral ABCD is maximum where `theta in (3 pi/2, 2 pi)` then (a) maximum area is 10 sq units (b) `theta = 7 pi/4` (c) `theta = 2 pi- sin^(-1) 3/ sqrt(85)` (d) maximum area is 12 sq units

Text Solution

Verified by Experts

Area of qudrilateral AbCD is maximum when area of ACD is maximum. Area of triangle ACD.
`Delta_1=(1)/(2)||{:(3/sqrt2,,sqrt2,,),(3/sqrt2,,-sqrt2,,),(3sintheta,,2costheta,,),(3/sqrt2,,sqrt2,,):}||`
`=|-3sqrt(2)costheta+3sqrt(2)sintheta|`
`therefore Delta_1("max")=6`, when`theta=(7pi)/(4)` (as `theta epsilon(3pi//2,2pi`))
Maximum area is 12 sq.units (as ABCD is a rectangle).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.23|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.24|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.21|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

cos theta+sqrt(3)sin theta=2

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

If P (sin theta, 1//sqrt(2)) and Q(1//sqrt(2), cos theta), -pi le theta le pi are two points on the same side of the line x-y=0, then theta belongs to the interval

If points A(5/sqrt2,sqrt3) and (cos^2theta, costheta) are the same side the line 2x - y = 1, then find the values of theta in [pi,2pi] .

Prove that sqrt ( 2 + sqrt (2 + sqrt (2 + 2 cos 8 theta))) = 2 cos theta, where theta in [ (-pi)/(8), (pi)/(8)]

Solve : sqrt3 sin theta - cos theta = sqrt2.

Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot theta then k=

Let (3pi)/4 < theta < pi and sqrt(2 cot theta+1/sin^2 theta) = k - cot theta then k=

Evaluate: int_0^(pi//2)sqrt(costheta)sin^3theta d theta