Home
Class 12
MATHS
Given points P(2,3), Q(4, -2), and R(alp...

Given points `P(2,3), Q(4, -2), and R(alpha,0)`. Find the value of a if `PR + RQ` is minimum.

Text Solution

AI Generated Solution

To find the value of \( \alpha \) such that the sum of distances \( PR + RQ \) is minimized, we will follow these steps: ### Step 1: Write the distance formulas The distance \( PR \) between points \( P(2, 3) \) and \( R(\alpha, 0) \) can be calculated using the distance formula: \[ PR = \sqrt{(\alpha - 2)^2 + (0 - 3)^2} = \sqrt{(\alpha - 2)^2 + 9} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.22|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.23|1 Videos
  • COORDINATE SYSYEM

    CENGAGE ENGLISH|Exercise Illustration1.20|1 Videos
  • COORDINATE SYSTEM

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|2 Videos
  • CROSS PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.2|13 Videos

Similar Questions

Explore conceptually related problems

Given points P(2,3),Q(4,-2),a n dR(alpha,0) (i) Find the value of ( i i )alpha( i i i ) (iv) if ( v ) (vi) P R+r Q (vii) (viii) is minimum (ix) Find the value of ( x )alpha( x i ) (xii) if ( x i i i ) (xiv)|( x v ) P R-R Q|( x v i ) (xvii) is maximum

If P, Q and R are three points with coordinates (1, 4), (4, 5) and (m, m) respectively, then the value of m for which PR + RQ is minimum, is :

If P=(1,1),Q=(3,2) and R is a point on x-axis then the value of PR+RQ will be minimum at

Consider the points P(2,-4);Q(4,-2) and R(7,1). The points P,Q,R

If \ ^(10)P_r=5040 find the value of rdot

A point R with x-coordinate 4 lies on the line segment joining the points P (2, -3, 4) and Q (8, 0, 10) . Find the coordinates of the point R.

If "^10 P_r=5040 , find the value of r .

If P(0, 1, 2), Q(4, -2, 1) and R(0, 0, 0) are three points, then anglePRQ is

If the points P(-3,\ 9),\ \ Q(a ,\ b) and R(4,\ -5) are collinear and a+b=1 , find the values of a and b .

A man strats from the point P(-3,4) and reaches the point Q(0,1) touching the x-axis at R(alpha,0) such that PR+RQ is minimum. Then |alpha|= .