Home
Class 12
MATHS
Given that cos(x/2).cos(x/4).cos(x/8).....

Given that `cos(x/2).cos(x/4).cos(x/8)..... = sinx/x` Prove that `(1/2^2)sec^2(x/2) +(1/2^4)sec^2(x/4) +..... = cosec^2x - 1/(x^2)`

Text Solution

AI Generated Solution

To prove the given equation, we start with the provided identity: \[ \cos\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{4}\right) \cdot \cos\left(\frac{x}{8}\right) \cdots = \frac{\sin x}{x} \] ### Step 1: Taking the logarithm of both sides We take the logarithm of both sides to simplify the product on the left-hand side: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Archives|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Given that cosx/2.cosx/4.cosx/8....=sinx/x Then find the sum 1/2^2sec^2x/2+1/2^4sec^2x/4+...

Prove that, (sin (x/2)-cos (x/2))^(2)=1-sinx

Prove that: sec^(2)x+"cosec"^(2)xge4

If cosx/2dotcosx/(2^2)dotcosx/(2^3)oo=(sinx)/x , then find the value of 1/(2^2)sec^2x/2+1/(2^4)sec^2x/(2^2)+1/(2^6)sec^2x/(2^3)+oo

Prove that : cos (2 sin^(-1) x) = 1-2x^2

lim_(xto(pi)) (1-sin(x/2))/(cos(x/2)(cos(x/4)-sin(x/4)))

Prove that: (cos7x-cos8x)/(1+2cos5x)=cos2x-cos3x

Evaluate lim_(ntooo) {cos((x)/(2))cos((x)/(4))cos((x)/(8))...cos((x)/(2^(n)))} .

Prove that: 3cos^(-1)x=cos^(-1)(4x^3-3x), x in [1/2,1]

Prove that: cos^2 2x-cos^2 6x=sin4xsin8x