Home
Class 12
MATHS
Evaluate int(dx)/(cot^(2)x-1)...

Evaluate `int(dx)/(cot^(2)x-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{dx}{\cot^2 x - 1} \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \cot^2 x \) in terms of sine and cosine: \[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \] Thus, the integrand becomes: \[ \frac{1}{\cot^2 x - 1} = \frac{1}{\frac{\cos^2 x}{\sin^2 x} - 1} = \frac{1}{\frac{\cos^2 x - \sin^2 x}{\sin^2 x}} = \frac{\sin^2 x}{\cos^2 x - \sin^2 x} \] ### Step 2: Use the identity for cosine Using the identity \( \cos 2x = \cos^2 x - \sin^2 x \), we can rewrite the integral: \[ \int \frac{\sin^2 x}{\cos^2 x - \sin^2 x} \, dx = \int \frac{\sin^2 x}{\cos 2x} \, dx \] ### Step 3: Substitute for sine squared We can express \( \sin^2 x \) in terms of \( \cos 2x \): \[ \sin^2 x = \frac{1 - \cos 2x}{2} \] Substituting this into the integral gives: \[ \int \frac{\frac{1 - \cos 2x}{2}}{\cos 2x} \, dx = \frac{1}{2} \int \frac{1 - \cos 2x}{\cos 2x} \, dx \] ### Step 4: Separate the integral This can be separated into two integrals: \[ \frac{1}{2} \left( \int \frac{1}{\cos 2x} \, dx - \int 1 \, dx \right) \] This simplifies to: \[ \frac{1}{2} \left( \int \sec 2x \, dx - x \right) \] ### Step 5: Evaluate the integral of secant The integral of \( \sec 2x \) can be evaluated using the formula: \[ \int \sec kx \, dx = \frac{1}{k} \ln |\sec kx + \tan kx| + C \] For our case, \( k = 2 \): \[ \int \sec 2x \, dx = \frac{1}{2} \ln |\sec 2x + \tan 2x| + C \] ### Step 6: Combine results Putting everything together, we have: \[ \frac{1}{2} \left( \frac{1}{2} \ln |\sec 2x + \tan 2x| - x \right) + C \] This simplifies to: \[ \frac{1}{4} \ln |\sec 2x + \tan 2x| - \frac{1}{2} x + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{dx}{\cot^2 x - 1} = \frac{1}{4} \ln |\sec 2x + \tan 2x| - \frac{1}{2} x + C \]

To evaluate the integral \( \int \frac{dx}{\cot^2 x - 1} \), we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \cot^2 x \) in terms of sine and cosine: \[ \cot^2 x = \frac{\cos^2 x}{\sin^2 x} \] Thus, the integrand becomes: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.2|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(dx)/(1-x-x^(2))

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

Evaluate : int_(0)^(1) cot^(-1) (1-x + x^(2))dx

Evaluate : int (x)/(x+1)^(2)(dx)

Evaluate : int(1/(2x^(2)+x-1)) dx

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(cotx+x)cot^2xdx

Evaluate int(dx)/((1+x^(2))sqrt(1-x^(2))).

Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

Evaluate: int(2x-1)/((x-1)^2)dx