Home
Class 12
MATHS
Evaluate: int(dx)/(sqrt(x)+sqrt(x-2))...

Evaluate: `int(dx)/(sqrt(x)+sqrt(x-2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{dx}{\sqrt{x} + \sqrt{x-2}}, \] we can start by rationalizing the denominator. This involves multiplying the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{x} - \sqrt{x-2}\). ### Step 1: Rationalize the Denominator Multiply and divide by \(\sqrt{x} - \sqrt{x-2}\): \[ I = \int \frac{dx (\sqrt{x} - \sqrt{x-2})}{(\sqrt{x} + \sqrt{x-2})(\sqrt{x} - \sqrt{x-2})}. \] ### Step 2: Simplify the Denominator The denominator simplifies as follows: \[ (\sqrt{x} + \sqrt{x-2})(\sqrt{x} - \sqrt{x-2}) = x - (x - 2) = 2. \] Thus, we can rewrite the integral: \[ I = \int \frac{\sqrt{x} - \sqrt{x-2}}{2} \, dx = \frac{1}{2} \int (\sqrt{x} - \sqrt{x-2}) \, dx. \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \frac{1}{2} \left( \int \sqrt{x} \, dx - \int \sqrt{x-2} \, dx \right). \] ### Step 4: Evaluate Each Integral 1. For \(\int \sqrt{x} \, dx\): Using the formula \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\): \[ \int \sqrt{x} \, dx = \int x^{1/2} \, dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2}. \] 2. For \(\int \sqrt{x-2} \, dx\): Using the same formula: \[ \int \sqrt{x-2} \, dx = \int (x-2)^{1/2} \, dx = \frac{(x-2)^{3/2}}{3/2} = \frac{2}{3} (x-2)^{3/2}. \] ### Step 5: Combine Results Now substituting back into our expression for \(I\): \[ I = \frac{1}{2} \left( \frac{2}{3} x^{3/2} - \frac{2}{3} (x-2)^{3/2} \right). \] This simplifies to: \[ I = \frac{1}{3} x^{3/2} - \frac{1}{3} (x-2)^{3/2} + C. \] ### Final Answer Thus, the final result is: \[ I = \frac{1}{3} x^{3/2} - \frac{1}{3} (x-2)^{3/2} + C. \] ---

To evaluate the integral \[ I = \int \frac{dx}{\sqrt{x} + \sqrt{x-2}}, \] we can start by rationalizing the denominator. This involves multiplying the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{x} - \sqrt{x-2}\). ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.4|20 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.1|9 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(dx)/(x+sqrt(x))

Evaluate int(dx)/(x+sqrt(x))

Evaluate: int(dx)/(sqrt(1-x^2))

Evaluate: int(dx)/((x+1)sqrt(1+x-x^(2))

Evaluate int(1)/(sqrt(x))(sqrt(x)+(1)/(sqrt(x)))^(2)dx

Evaluate: int1/(sqrt(x)+4sqrt(x))dx

Evaluate: int1/(sqrt(x)+sqrt(x+1))\ dx

Evaluate int(1)/(x+sqrt(x))dx

Evaluate : int(dx)/(sqrt(5x+4x-x^(2)))

Evaluate: int(x+1)/((x-1)sqrt(x+2))dx