Home
Class 12
MATHS
int(sin2x)/(a+bcosx)^2dx...

`int(sin2x)/(a+bcosx)^2dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 2x}{(a + b \cos x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \sin 2x \) using the double angle identity: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the integral as: \[ \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} \, dx \] ### Step 2: Use substitution Next, we will use the substitution: \[ t = a + b \cos x \] Then, we differentiate \( t \) with respect to \( x \): \[ dt = -b \sin x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{b \sin x} \] From our substitution, we can express \( \sin x \) in terms of \( t \): \[ \sin x = \sqrt{1 - \cos^2 x} = \sqrt{1 - \left(\frac{t - a}{b}\right)^2} \] ### Step 3: Substitute in the integral Now we substitute \( \sin x \) and \( dx \) into the integral: \[ \int \frac{2 \sin x \cos x}{(a + b \cos x)^2} \, dx = \int \frac{2 \sin x \cos x}{t^2} \left(-\frac{dt}{b \sin x}\right) \] This simplifies to: \[ -\frac{2}{b} \int \frac{\cos x}{t^2} \, dt \] ### Step 4: Express \( \cos x \) in terms of \( t \) From our substitution, we know: \[ \cos x = \frac{t - a}{b} \] Thus, we can rewrite the integral as: \[ -\frac{2}{b} \int \frac{(t - a)/b}{t^2} \, dt = -\frac{2}{b^2} \int \frac{t - a}{t^2} \, dt \] ### Step 5: Split the integral Now we can split the integral: \[ -\frac{2}{b^2} \left( \int \frac{1}{t} \, dt - a \int \frac{1}{t^2} \, dt \right) \] ### Step 6: Integrate The integrals can be computed as follows: 1. \( \int \frac{1}{t} \, dt = \log |t| \) 2. \( \int \frac{1}{t^2} \, dt = -\frac{1}{t} \) Thus, we have: \[ -\frac{2}{b^2} \left( \log |t| + a \left(-\frac{1}{t}\right) \right) + C \] This simplifies to: \[ -\frac{2}{b^2} \log |t| + \frac{2a}{b^2 t} + C \] ### Step 7: Substitute back for \( t \) Finally, we substitute back \( t = a + b \cos x \): \[ -\frac{2}{b^2} \log |a + b \cos x| + \frac{2a}{b^2 (a + b \cos x)} + C \] ### Final Answer Thus, the final answer is: \[ -\frac{2}{b^2} \log |a + b \cos x| + \frac{2a}{b^2 (a + b \cos x)} + C \] ---

To solve the integral \( \int \frac{\sin 2x}{(a + b \cos x)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting \( \sin 2x \) using the double angle identity: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can rewrite the integral as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin2x)/((a+bcosx)^2)dx

Evaluate: int(sin2x)/((a+bcosx)^2)dx

int(sin2x)/(cos2x)dx

Evaluate: int(sin2x)/((a+bcosx)^2)

int(sin2x)/(cos x)*dx

Evaluate: (i) int(sin2x)/((a+bcos2x)^2)\ dx (ii) int(logx^2)/x\ dx

int(1+sin2x)/(cos^2x)dx

int(2+sin2x)/(1+cos2 x)dx

I=int(sin2x-cos2x)^(2)dx

Evaluate: int(a+bcosx)/(b+acosx)^2dx