Home
Class 12
MATHS
solve equation 2 tan^(-1)(cosx)=tan^(-1)...

solve equation `2 tan^(-1)(cosx)=tan^(-1)(2cosecx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x) \), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that \( 2 \tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1 - y^2}\right) \). Therefore, we can rewrite the left side of the equation: \[ 2 \tan^{-1}(\cos x) = \tan^{-1\left(\frac{2 \cos x}{1 - \cos^2 x}\right) \] ### Step 2: Simplify the expression Recall that \( 1 - \cos^2 x = \sin^2 x \). Thus, we can simplify: \[ \tan^{-1}\left(\frac{2 \cos x}{\sin^2 x}\right) = \tan^{-1}(2 \csc x) \] ### Step 3: Set the arguments equal Since \( \tan^{-1}(A) = \tan^{-1}(B) \) implies \( A = B \) (as long as both are in the principal range of the arctangent function), we can set the arguments equal: \[ \frac{2 \cos x}{\sin^2 x} = 2 \csc x \] ### Step 4: Rewrite \( \csc x \) Recall that \( \csc x = \frac{1}{\sin x} \), so we can rewrite the right side: \[ \frac{2 \cos x}{\sin^2 x} = \frac{2}{\sin x} \] ### Step 5: Cross-multiply to eliminate the fractions Cross-multiplying gives us: \[ 2 \cos x \cdot \sin x = 2 \sin^2 x \] ### Step 6: Simplify the equation Dividing both sides by 2 (assuming \( \sin x \neq 0 \)): \[ \cos x \cdot \sin x = \sin^2 x \] ### Step 7: Rearranging the equation Rearranging gives: \[ \cos x \cdot \sin x - \sin^2 x = 0 \] Factoring out \( \sin x \): \[ \sin x (\cos x - \sin x) = 0 \] ### Step 8: Solve for \( x \) This gives us two cases: 1. \( \sin x = 0 \) 2. \( \cos x - \sin x = 0 \) From \( \sin x = 0 \), we have: \[ x = n\pi \quad (n \in \mathbb{Z}) \] From \( \cos x - \sin x = 0 \), we have: \[ \cos x = \sin x \implies x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] ### Final Solution Thus, the solutions to the equation are: \[ x = n\pi \quad \text{and} \quad x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \]

To solve the equation \( 2 \tan^{-1}(\cos x) = \tan^{-1}(2 \csc x) \), we can follow these steps: ### Step 1: Use the double angle formula for tangent We know that \( 2 \tan^{-1}(y) = \tan^{-1}\left(\frac{2y}{1 - y^2}\right) \). Therefore, we can rewrite the left side of the equation: \[ 2 \tan^{-1}(\cos x) = \tan^{-1\left(\frac{2 \cos x}{1 - \cos^2 x}\right) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Numerical Value Type)|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Multiple correct Answer Type)|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

Solve the equations. 2tan^(-1)(cosx)=tan^(-1)(2cose c x)

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

Solve for x : 2tan^(-1)(cosx)=tan^(-1)(2cos e cx)

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve for x : 2tan^(-1)(sinx)=tan^(-1)(2secx),\ x!=pi/2

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x ,(x >0)